Suppr超能文献

网络中疾病传播与控制的建模:对植物科学的启示

Modelling disease spread and control in networks: implications for plant sciences.

作者信息

Jeger Mike J, Pautasso Marco, Holdenrieder Ottmar, Shaw Mike W

机构信息

Division of Biology, Imperial College London, Wye Campus, Kent TN25 5AH, UK.

Institute of Integrative Biology, Department of Environmental Sciences, Eidgenössische Technische Hochschule, 8092 Zurich, Switzerland.

出版信息

New Phytol. 2007;174(2):279-297. doi: 10.1111/j.1469-8137.2007.02028.x.

Abstract

Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.

摘要

网络在自然、技术和社会系统中无处不在。鉴于当今世界的相互关联性,网络对于增进对植物、动物和人类传染病的理解与控制愈发重要。近期关于复杂网络中疾病发展的建模研究表明:与随机网络相比,在无标度网络中病原体传播相对迅速,除非存在高度的局部聚类;理论上无限大小的无标度网络不存在流行阈值,这意味着低感染率的疾病也能在其中传播,但当给网络添加现实特征(如有限大小、家庭结构或链路停用)时会出现阈值;以及不对称相互作用对流行动态的影响。模型表明,控制在无标度网络中传播的病原体应聚焦于高度连接的个体,而非大规模随机免疫。网络理论在人类医学和动物疾病生态学中的实证应用越来越多,证实了该方法的潜力,并表明网络思维也可能有益于植物流行病学和森林病理学,特别是在通过植物和病害繁殖体商业运输相连的人为改变的病理系统中。文中讨论了对植物和树木病害研究与管理的潜在影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验