Suppr超能文献

评估一种用于估计迁移率的多位点贝叶斯方法的性能。

Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates.

作者信息

Faubet Pierre, Waples Robin S, Gaggiotti Oscar E

机构信息

Laboratoire d'Ecologie Alpine (LECA), UMR CNRS 5553, BP 53, 38041 Grenoble Cedex 09, France.

出版信息

Mol Ecol. 2007 Mar;16(6):1149-66. doi: 10.1111/j.1365-294X.2007.03218.x.

Abstract

Bayesian methods have become extremely popular in molecular ecology studies because they allow us to estimate demographic parameters of complex demographic scenarios using genetic data. Articles presenting new methods generally include sensitivity studies that evaluate their performance, but they tend to be limited and need to be followed by a more thorough evaluation. Here we evaluate the performance of a recent method, bayesass, which allows the estimation of recent migration rates among populations, as well as the inbreeding coefficient of each local population. We expand the simulation study of the original publication by considering multi-allelic markers and scenarios with varying number of populations. We also investigate the effect of varying migration rates and F(ST) more thoroughly in order to identify the region of parameter space where the method is and is not able to provide accurate estimates of migration rate. Results indicate that if the demographic history of the species being studied fits the assumptions of the inference model, and if genetic differentiation is not too low (F(ST) > or = 0.05), then the method can give fairly accurate estimates of migration rates even when they are fairly high (about 0.1). However, when the assumptions of the inference model are violated, accurate estimates are obtained only if migration rates are very low (m = 0.01) and genetic differentiation is high (F(ST) > or = 0.10). Our results also show that using posterior assignment probabilities as an indication of how much confidence we can place on the assignments is problematical since the posterior probability of assignment can be very high even when the individual assignments are very inaccurate.

摘要

贝叶斯方法在分子生态学研究中已变得极为流行,因为它们使我们能够利用遗传数据估计复杂人口统计学情景下的人口统计学参数。介绍新方法的文章通常包括评估其性能的敏感性研究,但这些研究往往较为有限,需要后续进行更全面的评估。在此,我们评估了一种最新方法bayesass的性能,该方法能够估计种群间的近期迁移率以及每个当地种群的近亲繁殖系数。我们通过考虑多等位基因标记和不同种群数量的情景,扩展了原始出版物的模拟研究。我们还更深入地研究了迁移率和F(ST)变化的影响,以确定该方法能够和无法准确估计迁移率的参数空间区域。结果表明,如果所研究物种的人口统计学历史符合推断模型的假设,并且如果遗传分化不太 低(F(ST)≥0.05),那么即使迁移率相当高(约0.1),该方法也能给出相当准确的迁移率估计。然而,当推断模型的假设不成立时,只有在迁移率非常低(m = 0.01)且遗传分化较高(F(ST)≥0.10)时才能获得准确估计。我们的结果还表明,使用后验分配概率来指示我们对分配的置信程度存在问题,因为即使个体分配非常不准确,分配的后验概率也可能非常高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验