Suppr超能文献

基于图像的单细胞药物反应多变量分析。

Image-based multivariate profiling of drug responses from single cells.

作者信息

Loo Lit-Hsin, Wu Lani F, Altschuler Steven J

机构信息

Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., ND 9.214, Dallas, Texas 75390, USA.

出版信息

Nat Methods. 2007 May;4(5):445-53. doi: 10.1038/nmeth1032. Epub 2007 Apr 1.

Abstract

Quantitative analytical approaches for discovering new compound mechanisms are required for summarizing high-throughput, image-based drug screening data. Here we present a multivariate method for classifying untreated and treated human cancer cells based on approximately 300 single-cell phenotypic measurements. This classification provides a score, measuring the magnitude of the drug effect, and a vector, indicating the simultaneous phenotypic changes induced by the drug. These two quantities were used to characterize compound activities and identify dose-dependent multiphasic responses. A systematic survey of profiles extracted from a 100-compound compendium of image data revealed that only 10-15% of the original features were required to detect a compound effect. We report the most informative image features for each compound and fluorescence marker set using a method that will be useful for determining minimal collections of readouts for drug screens. Our approach provides human-interpretable profiles and automatic determination of on- and off-target effects.

摘要

发现新化合物作用机制的定量分析方法对于总结高通量、基于图像的药物筛选数据是必需的。在此,我们提出一种多变量方法,基于约300个单细胞表型测量对未处理和经处理的人类癌细胞进行分类。这种分类提供了一个衡量药物效应大小的分数和一个指示药物诱导的同时发生的表型变化的向量。这两个量用于表征化合物活性并识别剂量依赖性多相反应。对从100种化合物的图像数据汇编中提取的概况进行系统调查发现,检测化合物效应仅需要10 - 15%的原始特征。我们使用一种对确定药物筛选的最小读数集有用的方法报告了每种化合物和荧光标记集最具信息性的图像特征。我们的方法提供了人类可解释的概况以及对靶标和脱靶效应的自动判定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验