Suppr超能文献

表型药物发现中高内涵筛选指纹图谱多元相似性度量的基准测试

Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery.

作者信息

Reisen Felix, Zhang Xian, Gabriel Daniela, Selzer Paul

机构信息

1Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Basel, Switzerland.

出版信息

J Biomol Screen. 2013 Dec;18(10):1284-97. doi: 10.1177/1087057113501390. Epub 2013 Sep 17.

Abstract

High-content screening (HCS) is a powerful tool for drug discovery being capable of measuring cellular responses to chemical disturbance in a high-throughput manner. HCS provides an image-based readout of cellular phenotypes, including features such as shape, intensity, or texture in a highly multiplexed and quantitative manner. The corresponding feature vectors can be used to characterize phenotypes and are thus defined as HCS fingerprints. Systematic analyses of HCS fingerprints allow for objective computational comparisons of cellular responses. Such comparisons therefore facilitate the detection of different compounds with different phenotypic outcomes from high-throughput HCS campaigns. Feature selection methods and similarity measures, as a basis for phenotype identification and clustering, are critical for the quality of such computational analyses. We systematically evaluated 16 different similarity measures in combination with linear and nonlinear feature selection methods for their potential to capture biologically relevant image features. Nonlinear correlation-based similarity measures such as Kendall's τ and Spearman's ρ perform well in most evaluation scenarios, outperforming other frequently used metrics (such as the Euclidian distance). We also present four novel modifications of the connectivity map similarity that surpass the original version, in our experiments. This study provides a basis for generic phenotypic analysis in future HCS campaigns.

摘要

高内涵筛选(HCS)是药物发现的强大工具,能够以高通量方式测量细胞对化学干扰的反应。HCS以高度多重和定量的方式提供基于图像的细胞表型读数,包括形状、强度或纹理等特征。相应的特征向量可用于表征表型,因此被定义为HCS指纹。对HCS指纹的系统分析允许对细胞反应进行客观的计算比较。因此,这种比较有助于从高通量HCS实验中检测出具有不同表型结果的不同化合物。作为表型识别和聚类基础的特征选择方法和相似性度量,对于此类计算分析的质量至关重要。我们系统地评估了16种不同的相似性度量与线性和非线性特征选择方法相结合时捕获生物学相关图像特征的潜力。基于非线性相关性的相似性度量,如肯德尔τ系数和斯皮尔曼ρ系数,在大多数评估场景中表现良好,优于其他常用指标(如欧几里得距离)。在我们的实验中,我们还提出了连通性图谱相似性的四种新颖改进,其性能超过了原始版本。本研究为未来HCS实验中的通用表型分析提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验