Shariff Aabid, Kangas Joshua, Coelho Luis Pedro, Quinn Shannon, Murphy Robert F
Lane Center for Computational Biology and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, PA, USA.
J Biomol Screen. 2010 Aug;15(7):726-34. doi: 10.1177/1087057110370894. Epub 2010 May 20.
The field of high-content screening and analysis consists of a set of methodologies for automated discovery in cell biology and drug development using large amounts of image data. In most cases, imaging is carried out by automated microscopes, often assisted by automated liquid handling and cell culture. Image processing, computer vision, and machine learning are used to automatically process high-dimensional image data into meaningful cell biological results. The key is creating automated analysis pipelines typically consisting of 4 basic steps: (1) image processing (normalization, segmentation, tracing, tracking), (2) spatial transformation to bring images to a common reference frame (registration), (3) computation of image features, and (4) machine learning for modeling and interpretation of data. An overview of these image analysis tools is presented here, along with brief descriptions of a few applications.
高内涵筛选与分析领域由一系列用于细胞生物学和药物开发中利用大量图像数据进行自动发现的方法组成。在大多数情况下,成像是通过自动显微镜进行的,通常还会辅以自动液体处理和细胞培养。图像处理、计算机视觉和机器学习被用于将高维图像数据自动处理为有意义的细胞生物学结果。关键在于创建通常由4个基本步骤组成的自动分析流程:(1)图像处理(归一化、分割、追踪、跟踪),(2)空间变换以使图像进入共同的参考框架(配准),(3)图像特征计算,以及(4)用于数据建模和解释的机器学习。这里介绍了这些图像分析工具的概述,以及对一些应用的简要描述。