Suppr超能文献

用于高内涵筛选和分析的自动化图像分析

Automated image analysis for high-content screening and analysis.

作者信息

Shariff Aabid, Kangas Joshua, Coelho Luis Pedro, Quinn Shannon, Murphy Robert F

机构信息

Lane Center for Computational Biology and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

J Biomol Screen. 2010 Aug;15(7):726-34. doi: 10.1177/1087057110370894. Epub 2010 May 20.

Abstract

The field of high-content screening and analysis consists of a set of methodologies for automated discovery in cell biology and drug development using large amounts of image data. In most cases, imaging is carried out by automated microscopes, often assisted by automated liquid handling and cell culture. Image processing, computer vision, and machine learning are used to automatically process high-dimensional image data into meaningful cell biological results. The key is creating automated analysis pipelines typically consisting of 4 basic steps: (1) image processing (normalization, segmentation, tracing, tracking), (2) spatial transformation to bring images to a common reference frame (registration), (3) computation of image features, and (4) machine learning for modeling and interpretation of data. An overview of these image analysis tools is presented here, along with brief descriptions of a few applications.

摘要

高内涵筛选与分析领域由一系列用于细胞生物学和药物开发中利用大量图像数据进行自动发现的方法组成。在大多数情况下,成像是通过自动显微镜进行的,通常还会辅以自动液体处理和细胞培养。图像处理、计算机视觉和机器学习被用于将高维图像数据自动处理为有意义的细胞生物学结果。关键在于创建通常由4个基本步骤组成的自动分析流程:(1)图像处理(归一化、分割、追踪、跟踪),(2)空间变换以使图像进入共同的参考框架(配准),(3)图像特征计算,以及(4)用于数据建模和解释的机器学习。这里介绍了这些图像分析工具的概述,以及对一些应用的简要描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验