Gallar P, Ortiz M, Ortega O, Rodríguez I, Seijas V, Carreño A, Oliet A, Vigil A
Servicio de Nefrología, Hospital Severo Ochoa, Leganés, Madrid.
Nefrologia. 2007;27(1):46-52.
The sustained elevation of phosphorous among patients with end-stage renal failure is associated with elevated mortality rates. Phosphate binding agents are usually necessary to control serum phosphate levels. Phosphate removal during dialysis is limited largely due to the intracellular location of most inorganic phosphorous. The membrane surface, the frequency and the duration of therapy have proved to be very important factors in the serum phosphate control. THE AIM of our work is to investigate the influence on phosphate removal of factors that normally participate in the haemodialysis session: Plasma phosphate level (Php), treatment duration, membrane surface, high or low-flux membranes, the vascular access, dialysate flux , the volume of blood passing through the dialyzer (L) in each dialysis session and the blood flow during the first hour of dialysis. On 16 patients, we also had the possibility of comparing phosphate removal with 1.8 m(2) high-flux haemodialysis, 1.8 m(2) on-line hemodiafiltration and the on-line technique with the new Helixone dialyzer Fresenius Fx100.
108 haemodialysis patients, 62% men, 38% women aged 21-82 years (61+/-14;mean+/-sem),) were selected for the study. Mean treatment time 4.14+/-0.41 hours (range 3.5-5 hours). The vascular access was an arterio-venous fistula in eighty five (78%) and a double lumen tunnelled catheter 23 (22%). Patients were studied under their normal every day conditions. High-flux membrane was used by 31 (30%) patients and low-flux membrane by 77 (70%). Membrane surface was: 1.7 m2:17 (16%); 1.8 m2:77 (71%); 2,1 m2:14 (13%). Dialysate flux was: 500 ml/min. 55 patients; 700 ml/min: 53 patients. In 16 out of 108 patients we had the possibility of using on-line hemodiafiltration with ultrapure bicarbonate-buffered dialysate. Phosphate mass removal (MPO4) was calculated using the formula:MPO4=0.1 t-17+50 Cds 60+11Cb 60 (1), where t is treatment time in minutes, Cds60 and Cb60 are phosphate concentrations in dialysate and plasma measured at 60 min from the beginning of hemodialysis in mg/dl, and MPO4 is the estimated phosphate removed in mg/treatment.
We found a good correlation between phosphate removal and serum phosphate levels (p=0.01), but not with the membrane surface or treatment duration. Phosphate removal was 640+/-180 mg/session with low-flux membrane and 700+/-170 mg/session with high-flux membrane (p=0.280). The MPO4 was 720+/-190 mg/treatment in patients with a AV fistula and 620+/-180 in patients with a tunnelled catheter (p=0.023). We found a good correlation between phosphate removal and the volume of blood (L) that passed the dialyzer in each session (r=0.001) but we did not find a correlation between phosphate removal and KT/Vurea, the dialysate flux or the ultra filtration. On-line technique did not increased the MPO4(733+/-280 mg, p=0.383). The on-line technique with the new dialyzer (Fresenius Fx100), increased the phosphate removal to 759+/-199 mg/session (p=0.057).
Phosphate removal during dialysis is influenced by Plasma phosphate levels, the volume of blood that passed the dialyzer and the vascular access. Uniformity on time and membrane surface could explain the abs cense of influence in our case. The ultra filtration, dialysate flux, membrane permeability or on-line hemodiafiltration does not influence the phosphate removal. The new membrane helixone with 2,1 m2 (Fresenius Fx100) increases phosphate removal probably because the membrane surface is higher.
终末期肾衰竭患者体内磷持续升高与死亡率上升相关。通常需要使用磷结合剂来控制血清磷水平。由于大多数无机磷存在于细胞内,透析过程中磷的清除受到很大限制。治疗的膜面积、频率和持续时间已被证明是控制血清磷的非常重要的因素。我们研究的目的是调查通常参与血液透析过程的因素对磷清除的影响:血浆磷水平(Php)、治疗持续时间、膜面积、高通量或低通量膜、血管通路、透析液通量、每次透析过程中通过透析器的血流量(L)以及透析第一小时的血流速度。对于16例患者,我们还能够比较使用1.8平方米高通量血液透析、1.8平方米在线血液透析滤过以及使用新的费森尤斯Fx100螺旋型透析器的在线技术时的磷清除情况。
选择108例血液透析患者进行研究,其中男性62%,女性38%,年龄21 - 82岁(61±14;均值±标准误)。平均治疗时间4.14±0.41小时(范围3.5 - 5小时)。85例(78%)患者的血管通路为动静脉内瘘,23例(22%)为双腔带隧道导管。患者在日常正常情况下接受研究。31例(30%)患者使用高通量膜,77例(70%)患者使用低通量膜。膜面积为:1.7平方米:17例(16%);1.8平方米:77例(71%);2.1平方米:14例(13%)。透析液通量为:500 ml/分钟:55例患者;700 ml/分钟:53例患者。在108例患者中的16例,我们能够使用含超纯碳酸氢盐缓冲透析液的在线血液透析滤过。使用公式MPO4 = 0.1t - 17 + 50Cds60 + 11Cb60(1)计算磷质量清除量(MPO4),其中t为治疗时间(分钟),Cds60和Cb60分别为透析开始60分钟时透析液和血浆中的磷浓度(mg/dl),MPO4为每次治疗估计清除的磷量(mg)。
我们发现磷清除与血清磷水平之间存在良好相关性(p = 0.01),但与膜面积或治疗持续时间无关。低通量膜的磷清除量为640±180 mg/次,高通量膜为700±170 mg/次(p = 0.280)。动静脉内瘘患者的MPO4为720±190 mg/次,带隧道导管患者为620±180 mg/次(p = 0.023)。我们发现每次透析过程中磷清除与通过透析器的血流量(L)之间存在良好相关性(r = 0.001),但未发现磷清除与尿素清除率(KT/Vurea)、透析液通量或超滤之间存在相关性。在线技术并未增加MPO4(733±280 mg,p = 0.383)。使用新透析器(费森尤斯Fx100)的在线技术使磷清除增加至759±199 mg/次(p = 0.057)。
透析过程中的磷清除受血浆磷水平、通过透析器的血流量和血管通路影响。时间和膜面积的一致性可以解释在我们的研究中为何没有影响。超滤、透析液通量、膜通透性或在线血液透析滤过不影响磷清除。新的2.1平方米螺旋型膜(费森尤斯Fx100)可能由于膜面积更大而增加了磷清除。