School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
Nucleic Acids Res. 2011 Apr;39(7):2969-80. doi: 10.1093/nar/gkq1217. Epub 2010 Dec 3.
Although DNA flexibility is known to play an important role in DNA-protein interactions, the importance of protein flexibility is less well understood. Here, we show that protein dynamics are important in DNA recognition using the well-characterized human papillomavirus (HPV) type 6 E2 protein as a model system. We have compared the DNA binding properties of the HPV 6 E2 DNA binding domain (DBD) and a mutant lacking two C-terminal leucine residues that form part of the hydrophobic core of the protein. Deletion of these residues results in increased specific and non-specific DNA binding and an overall decrease in DNA binding specificity. Using (15)N NMR relaxation and hydrogen/deuterium exchange, we demonstrate that the mutation results in increased flexibility within the hydrophobic core and loop regions that orient the DNA binding helices. Stopped-flow kinetic studies indicate that increased flexibility alters DNA binding by increasing initial interactions with DNA but has little or no effect on the structural rearrangements that follow this step. Taken together these data demonstrate that subtle changes in protein dynamics have a major influence on protein-DNA interactions.
虽然 DNA 的灵活性在 DNA-蛋白质相互作用中起着重要作用,但蛋白质的灵活性的重要性却知之甚少。在这里,我们使用已被充分研究的人乳头瘤病毒(HPV)6 型 E2 蛋白作为模型系统,证明了蛋白质动力学在 DNA 识别中很重要。我们比较了 HPV 6 E2 DNA 结合域(DBD)和一种突变体的 DNA 结合特性,后者缺失了形成蛋白质疏水区核心的两个 C 端亮氨酸残基。缺失这些残基会导致特异性和非特异性 DNA 结合增加,以及 DNA 结合特异性总体降低。通过使用 (15)N NMR 弛豫和氢/氘交换实验,我们证明该突变导致疏水区和环区的柔韧性增加,这些区域使 DNA 结合螺旋定向。停流动力学研究表明,柔韧性的增加通过增加与 DNA 的初始相互作用来改变 DNA 结合,但对紧随这一步骤的结构重排几乎没有影响或没有影响。这些数据表明,蛋白质动力学的细微变化对蛋白质-DNA 相互作用有重大影响。