Cady Sarah D, Goodman Catherine, Tatko Chad D, DeGrado William F, Hong Mei
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
J Am Chem Soc. 2007 May 2;129(17):5719-29. doi: 10.1021/ja070305e. Epub 2007 Apr 7.
Membrane protein orientation has traditionally been determined by NMR using mechanically or magnetically aligned samples. Here we show a new NMR approach that abolishes the need for preparing macroscopically aligned membranes. When the protein undergoes fast uniaxial rotation around the bilayer normal, the 0 degrees -frequency of the motionally averaged powder spectrum is identical to the frequency of the aligned protein whose alignment axis is along the magnetic field. Thus, one can use unoriented membranes to determine the orientation of the protein relative to the bilayer normal. We demonstrate this approach on the M2 transmembrane peptide (M2TMP) of influenza A virus, which is known to assemble into a proton-conducting tetrameric helical bundle. The fast uniaxial rotational diffusion of the M2TMP helical bundle around the membrane normal is characterized via 2H quadrupolar couplings, C-H and N-H dipolar couplings, 13C chemical shift anisotropies, and 1H T1rho relaxation times. We then show that 15N chemical shift anisotropy and N-H dipolar coupling measured on these powder samples can be analyzed to yield precise tilt angles and rotation angles of the helices. The data show that the tilt angle of the M2TMP helices depends on the membrane thickness to reduce the hydrophobic mismatch. Moreover, the orientation of a longer M2 peptide containing both the transmembrane domain and cytoplasmic residues is similar to the orientation of the transmembrane domain alone, suggesting that the transmembrane domain regulates the orientation of this protein and that structural information obtained from M2TMP may be extrapolated to the longer peptide. This powder-NMR approach for orientation determination is generally applicable and can be extended to larger membrane proteins.
传统上,膜蛋白的取向是通过核磁共振(NMR)利用机械或磁取向的样品来确定的。在此,我们展示了一种新的核磁共振方法,该方法无需制备宏观取向的膜。当蛋白质围绕双层法线进行快速单轴旋转时,动态平均粉末谱的0度频率与取向轴沿磁场方向的取向蛋白质的频率相同。因此,人们可以使用未取向的膜来确定蛋白质相对于双层法线的取向。我们在甲型流感病毒的M2跨膜肽(M2TMP)上演示了这种方法,已知该肽可组装成质子传导性四聚体螺旋束。通过2H四极耦合、C-H和N-H偶极耦合、13C化学位移各向异性以及1H T1rho弛豫时间来表征M2TMP螺旋束围绕膜法线的快速单轴旋转扩散。然后我们表明,在这些粉末样品上测量的15N化学位移各向异性和N-H偶极耦合可以进行分析,以得出螺旋的精确倾斜角和旋转角。数据表明,M2TMP螺旋的倾斜角取决于膜厚度,以减少疏水不匹配。此外,包含跨膜结构域和细胞质残基的较长M2肽的取向与单独跨膜结构域的取向相似,这表明跨膜结构域调节该蛋白质的取向,并且从M2TMP获得的结构信息可以外推到更长的肽。这种用于取向确定的粉末核磁共振方法普遍适用,并且可以扩展到更大的膜蛋白。