Acc Chem Res. 2021 Mar 16;54(6):1430-1439. doi: 10.1021/acs.accounts.0c00670. Epub 2021 Mar 3.
Membrane proteins mediate a plethora of cellular functions and represent important targets for drug development. Unlike soluble proteins, membrane proteins require native-like environments to fold correctly and be active. Therefore, modern structural biology techniques have aimed to determine the structure and dynamics of these membrane proteins at physiological temperature and in liquid crystalline lipid bilayers. With the flourishing of new NMR methodologies and improvements in sample preparations, magic angle spinning (MAS) and oriented sample solid-state NMR (OS-ssNMR) spectroscopy of membrane proteins is experiencing a new renaissance. Born as antagonistic approaches, these techniques nowadays offer complementary information on the structural topology and dynamics of membrane proteins reconstituted in lipid membranes. By spinning biosolid samples at the magic angle (θ = 54.7°), MAS NMR experiments remove the intrinsic anisotropy of the NMR interactions, increasing spectral resolution. Internuclear spin interactions (spin exchange) are reintroduced by RF pulses, providing distances and torsion angles to determine secondary, tertiary, and quaternary structures of membrane proteins. OS-ssNMR, on the other hand, directly detects anisotropic NMR parameters such as dipolar couplings (DC) and anisotropic chemical shifts (CS), providing orientational constraints to determine the architecture (i.e., topology) of membrane proteins relative to the lipid membrane. Defining the orientation of membrane proteins and their interactions with lipid membranes is of paramount importance since lipid-protein interactions can shape membrane protein conformations and ultimately define their functional states.In this Account, we report selected studies from our group integrating MAS and OS-ssNMR techniques to give a comprehensive view of the biological processes occurring at cellular membranes. We focus on the main experiments for both techniques, with an emphasis on new implementation to increase both sensitivity and spectral resolution. We also describe how the structural constraints derived from both isotropic and anisotropic NMR parameters are integrated into dynamic structural modeling using replica-averaged orientational-restrained molecular dynamics simulations (RAOR-MD). We showcase small membrane proteins that are involved in Ca transport and regulate cardiac and skeletal muscle contractility: phospholamban (PLN, 6 kDa), sarcolipin (SLN, 4 kDa), and DWORF (4 kDa). We summarize our results for the structures of these polypeptides free and in complex with the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA, 110 kDa). Additionally, we illustrate the progress toward the determination of the structural topology of a six transmembrane protein associated with succinate and acetate transport (SatP, hexamer 120 kDa). From these examples, the integrated MAS and OS-ssNMR approach, in combination with modern computational methods, emerges as a way to overcome the challenges posed by studying large membrane protein systems.
膜蛋白介导了众多细胞功能,是药物开发的重要靶点。与可溶性蛋白不同,膜蛋白需要类似天然的环境才能正确折叠并保持活性。因此,现代结构生物学技术旨在确定生理温度下和液晶类脂双层中的这些膜蛋白的结构和动态。随着新的 NMR 方法学的蓬勃发展和样品制备的改进,魔角旋转(MAS)和定向样品固态 NMR(OS-ssNMR)光谱学技术正在经历新的复兴。这些技术原本是相互对立的方法,如今在脂质膜中重组的膜蛋白的结构拓扑和动力学方面提供了互补信息。通过将生物固体样品以魔角(θ=54.7°)旋转,MAS NMR 实验消除了 NMR 相互作用的固有各向异性,提高了光谱分辨率。通过射频脉冲重新引入核自旋相互作用(自旋交换),提供距离和扭转角来确定膜蛋白的二级、三级和四级结构。另一方面,OS-ssNMR 直接检测各向异性 NMR 参数,如偶极耦合(DC)和各向异性化学位移(CS),提供确定膜蛋白相对于脂质膜的结构(即拓扑)的方位约束。确定膜蛋白的取向及其与脂质膜的相互作用至关重要,因为脂质-蛋白相互作用可以塑造膜蛋白构象,并最终定义其功能状态。在本报告中,我们报告了我们小组整合 MAS 和 OS-ssNMR 技术的选定研究,以全面了解发生在细胞膜上的生物学过程。我们重点介绍了这两种技术的主要实验,并强调了新的实现方法,以提高灵敏度和光谱分辨率。我们还描述了如何将各向同性和各向异性 NMR 参数得出的结构约束整合到使用复制平均取向约束分子动力学模拟(RAOR-MD)的动态结构建模中。我们展示了一些参与 Ca 转运并调节心脏和骨骼肌收缩的小膜蛋白:磷蛋白(PLN,6 kDa)、肌浆球蛋白(SLN,4 kDa)和 DWORF(4 kDa)。我们总结了这些多肽在与肌浆网(SR)Ca-ATPase(SERCA,110 kDa)结合前后的结构。此外,我们还说明了在确定与琥珀酸和乙酸转运相关的六跨膜蛋白(SatP,六聚体 120 kDa)的结构拓扑方面取得的进展。从这些例子中可以看出,MAS 和 OS-ssNMR 方法的结合,以及现代计算方法,为研究大型膜蛋白系统带来的挑战提供了一种解决方案。