Suppr超能文献

一种反映心脏功能的皮层电位。

A cortical potential reflecting cardiac function.

作者信息

Gray Marcus A, Taggart Peter, Sutton Peter M, Groves David, Holdright Diana R, Bradbury David, Brull David, Critchley Hugo D

机构信息

Functional Imaging Laboratory, Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6818-23. doi: 10.1073/pnas.0609509104. Epub 2007 Apr 9.

Abstract

Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of one's own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity.

摘要

情绪创伤和心理压力可通过传出交感神经驱动的致心律失常作用引发心律失常和猝死。已有心脏病的患者风险尤其高。此外,大脑自主神经中枢内促心律失常活动模式的产生可能会因功能失调心肌的传入反馈而放大。一种反映传入心脏信息的皮层电位已被描述,它反映了个体在本体感受敏感性(对自身心跳的感知)方面的差异。为了增进我们对心律失常发生机制的理解,我们扩展了这种方法,识别出与应激期间心肌功能完整性的传入信息在皮层表达相对应的皮层电位。我们在已确诊心室功能障碍的患者中,同步测量了脑电图与心脏反应的变化。实验诱导的精神压力增强了所有患者交感神经活动的心血管指标(收缩压、心率、心室射血分数和皮肤电导)。然而,心肌的功能反应各不相同;一些患者在应激期间心输出量增加,而另一些患者则减少。在所有患者中,左颞叶和外侧额叶电极位置的心跳诱发电位幅度与应激诱导的心输出量变化相关,这与应激期间心肌功能的传入皮层表征一致。此外,左颞叶区域的心跳诱发电位幅度反映了心脏的促心律失常状态(左心室复极的不均一性)。这些观察结果描绘了一种心脏功能的皮层表征,可预测心脏复极中的促心律失常异常。我们的研究结果突出了心脏和大脑在应激诱导的心血管疾病中的动态相互作用。

相似文献

1
A cortical potential reflecting cardiac function.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6818-23. doi: 10.1073/pnas.0609509104. Epub 2007 Apr 9.
2
Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism.
Brain. 2005 Jan;128(Pt 1):75-85. doi: 10.1093/brain/awh324. Epub 2004 Oct 20.
4
The effect of mental stress on the non-dipolar components of the T wave: modulation by hypnosis.
Psychosom Med. 2005 May-Jun;67(3):376-83. doi: 10.1097/01.psy.0000160463.10583.88.
5
Asymmetric sympathetic output: The dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias.
Auton Neurosci. 2017 Nov;207:22-27. doi: 10.1016/j.autneu.2017.01.001. Epub 2017 Jan 17.
6
Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors.
J Cardiovasc Electrophysiol. 2005 Apr;16(4):372-7. doi: 10.1046/j.1540-8167.2005.40580.x.
7
Significance of neuro-cardiac control mechanisms governed by higher regions of the brain.
Auton Neurosci. 2016 Aug;199:54-65. doi: 10.1016/j.autneu.2016.08.013. Epub 2016 Aug 24.
8
[Stress, depression and cardiac arrhythmias].
Ther Umsch. 2003 Nov;60(11):673-81. doi: 10.1024/0040-5930.60.11.673.
9
Cerebral and neural regulation of cardiovascular activity during mental stress.
Biomed Eng Online. 2016 Dec 28;15(Suppl 2):160. doi: 10.1186/s12938-016-0255-1.
10
Short-term food deprivation increases amplitudes of heartbeat-evoked potentials.
Psychophysiology. 2015 May;52(5):695-703. doi: 10.1111/psyp.12388. Epub 2014 Nov 28.

引用本文的文献

1
Neural and Cardiac Contributions to Perceptual Suppression During Cycling.
Psychophysiology. 2025 Sep;62(9):e70144. doi: 10.1111/psyp.70144.
2
Validating genuine changes in heartbeat-evoked potentials using pseudotrials and surrogate procedures.
Imaging Neurosci (Camb). 2025 Jun 10;3. doi: 10.1162/IMAG.a.30. eCollection 2025.
3
Neurophysiological dynamics of visceral signals in emotion, self and bodily consciousness.
Proc Biol Sci. 2025 Jun;292(2048):20242625. doi: 10.1098/rspb.2024.2625. Epub 2025 Jun 4.
5
Heart-Brain Axis: A Narrative Review of the Interaction between Depression and Arrhythmia.
Biomedicines. 2024 Aug 1;12(8):1719. doi: 10.3390/biomedicines12081719.
6
Individual Differences in Bodily Self-Consciousness and Its Neural Basis.
Brain Sci. 2024 Aug 8;14(8):795. doi: 10.3390/brainsci14080795.
7
8
Attention to cardiac sensations enhances the heartbeat-evoked potential during exhalation.
iScience. 2024 Mar 27;27(4):109586. doi: 10.1016/j.isci.2024.109586. eCollection 2024 Apr 19.
9
Single neurons in the thalamus and subthalamic nucleus process cardiac and respiratory signals in humans.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2316365121. doi: 10.1073/pnas.2316365121. Epub 2024 Mar 7.
10
Complex Brain-Heart Mapping in Mental and Physical Stress.
IEEE J Transl Eng Health Med. 2023 May 29;11:495-504. doi: 10.1109/JTEHM.2023.3280974. eCollection 2023.

本文引用的文献

1
Differential control of cardiac functions by the brain.
Clin Exp Pharmacol Physiol. 2006 Dec;33(12):1255-8. doi: 10.1111/j.1440-1681.2006.04520.x.
2
Regulation of sympathetic nerve traffic to skeletal muscle in resting humans.
Clin Auton Res. 2006 Aug;16(4):262-9. doi: 10.1007/s10286-006-0357-0. Epub 2006 Jun 29.
3
On the relationship between interoceptive awareness, emotional experience, and brain processes.
Brain Res Cogn Brain Res. 2005 Dec;25(3):948-62. doi: 10.1016/j.cogbrainres.2005.09.019. Epub 2005 Nov 17.
4
Forebrain emotional asymmetry: a neuroanatomical basis?
Trends Cogn Sci. 2005 Dec;9(12):566-71. doi: 10.1016/j.tics.2005.10.005. Epub 2005 Nov 4.
5
Neural mechanisms of autonomic, affective, and cognitive integration.
J Comp Neurol. 2005 Dec 5;493(1):154-66. doi: 10.1002/cne.20749.
6
What resides in T-wave residuum?
J Cardiovasc Electrophysiol. 2005 Sep;16(9):952-3. doi: 10.1111/j.1540-8167.2005.50179.x.
7
Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans.
J Physiol. 2005 Nov 15;569(Pt 1):331-45. doi: 10.1113/jphysiol.2005.091637. Epub 2005 Sep 8.
8
Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation.
J Physiol. 2005 Oct 1;568(Pt 1):315-21. doi: 10.1113/jphysiol.2005.090076. Epub 2005 Jul 21.
9
Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging.
Neuroimage. 2005 Aug 1;27(1):201-9. doi: 10.1016/j.neuroimage.2005.03.041.
10
The effect of mental stress on the non-dipolar components of the T wave: modulation by hypnosis.
Psychosom Med. 2005 May-Jun;67(3):376-83. doi: 10.1097/01.psy.0000160463.10583.88.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验