Suppr超能文献

通过触觉识别真实面部的静态和动态情感表达。

Haptic recognition of static and dynamic expressions of emotion in the live face.

作者信息

Lederman S J, Klatzky R L, Abramowicz A, Salsman K, Kitada R, Hamilton C

机构信息

Queen's University, Kingston, Ontario, Canada.

出版信息

Psychol Sci. 2007 Feb;18(2):158-64. doi: 10.1111/j.1467-9280.2007.01866.x.

Abstract

If humans can detect the wealth of tactile and haptic information potentially available in live facial expressions of emotion (FEEs), they should be capable of haptically recognizing the six universal expressions of emotion (anger, disgust, fear, happiness, sadness, and surprise) at levels well above chance. We tested this hypothesis in the experiments reported here. With minimal training, subjects' overall mean accuracy was 51% for static FEEs (Experiment 1) and 74% for dynamic FEEs (Experiment 2). All FEEs except static fear were successfully recognized above the chance level of 16.7%. Complementing these findings, overall confidence and information transmission were higher for dynamic than for corresponding static faces. Our performance measures (accuracy and confidence ratings, plus response latency in Experiment 2 only) confirmed that happiness, sadness, and surprise were all highly recognizable, and anger, disgust, and fear less so.

摘要

如果人类能够察觉到在真实的面部情绪表达(FEEs)中潜在可用的丰富触觉和体感信息,那么他们应该能够通过触觉以远高于随机水平的准确率识别六种普遍的情绪表达(愤怒、厌恶、恐惧、快乐、悲伤和惊讶)。我们在此报告的实验中对这一假设进行了测试。经过最少的训练,对于静态面部情绪表达(实验1),受试者的总体平均准确率为51%,对于动态面部情绪表达(实验2)为74%。除了静态恐惧之外,所有面部情绪表达均成功被识别,且识别准确率高于16.7%的随机水平。作为这些发现的补充证据,动态面部表情相比相应的静态面部表情,总体信心和信息传递更高。我们的性能指标(准确率和信心评级,仅在实验2中加上反应潜伏期)证实,快乐、悲伤和惊讶都非常容易识别,而愤怒、厌恶和恐惧则较难识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验