Yu Peng, Grant P Ellen, Qi Yuan, Han Xiao, Ségonne Florent, Pienaar Rudolph, Busa Evelina, Pacheco Jenni, Makris Nikos, Buckner Randy L, Golland Polina, Fischl Bruce
Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology (MIT), Cambridge, MA 02139 USA.
IEEE Trans Med Imaging. 2007 Apr;26(4):582-97. doi: 10.1109/TMI.2007.892499.
In vivo quantification of neuroanatomical shape variations is possible due to recent advances in medical imaging and has proven useful in the study of neuropathology and neurodevelopment. In this paper, we apply a spherical wavelet transformation to extract shape features of cortical surfaces reconstructed from magnetic resonance images (MRIs) of a set of subjects. The spherical wavelet transformation can characterize the underlying functions in a local fashion in both space and frequency, in contrast to spherical harmonics that have a global basis set. We perform principal component analysis (PCA) on these wavelet shape features to study patterns of shape variation within normal population from coarse to fine resolution. In addition, we study the development of cortical folding in newborns using the Gompertz model in the wavelet domain, which allows us to characterize the order of development of large-scale and finer folding patterns independently. Given a limited amount of training data, we use a regularization framework to estimate the parameters of the Gompertz model to improve the prediction performance on new data. We develop an efficient method to estimate this regularized Gompertz model based on the Broyden-Fletcher-Goldfarb-Shannon (BFGS) approximation. Promising results are presented using both PCA and the folding development model in the wavelet domain. The cortical folding development model provides quantitative anatomic information regarding macroscopic cortical folding development and may be of potential use as a biomarker for early diagnosis of neurologic deficits in newborns.
由于医学成像技术的最新进展,对神经解剖形状变化进行体内定量成为可能,并且已证明其在神经病理学和神经发育研究中很有用。在本文中,我们应用球面小波变换来提取从一组受试者的磁共振图像(MRI)重建的皮质表面的形状特征。与具有全局基集的球谐函数相比,球面小波变换可以在空间和频率上以局部方式表征基础函数。我们对这些小波形状特征进行主成分分析(PCA),以研究正常人群中从粗到细分辨率的形状变化模式。此外,我们在小波域中使用Gompertz模型研究新生儿皮质折叠的发育,这使我们能够独立地表征大规模和更精细折叠模式的发育顺序。鉴于训练数据量有限,我们使用正则化框架来估计Gompertz模型的参数,以提高对新数据的预测性能。我们基于布罗伊登 - 弗莱彻 - 戈德法布 - 香农(BFGS)近似开发了一种有效的方法来估计这种正则化的Gompertz模型。在小波域中使用PCA和折叠发育模型都给出了有希望的结果。皮质折叠发育模型提供了有关宏观皮质折叠发育的定量解剖学信息,并且可能作为新生儿神经功能缺损早期诊断的生物标志物具有潜在用途。