Christensen G E, Rabbitt R D, Miller M I
The Institute for Biomedical Computing and The Electronic Signals and Systems Research Laboratory, Washington University, St Louis, MO 63130, USA.
Phys Med Biol. 1994 Mar;39(3):609-18. doi: 10.1088/0031-9155/39/3/022.
This paper presents two different mathematical methods that can be used separately or in conjunction to accommodate shape variabilities between normal human neuroanatomies. Both methods use a digitized textbook to represent the complex structure of a typical normal neuroanatomy. Probabilistic transformations on the textbook coordinate system are defined to accommodate shape differences between the textbook and images of other normal neuroanatomies. The transformations are constrained to be consistent with the physical properties of deformable elastic solids in the first method and those of viscous fluids in the second. Results presented in this paper demonstrate how a single deformable textbook can be used to accommodate normal shape variability.
本文介绍了两种不同的数学方法,它们可以单独使用,也可以结合使用,以适应正常人类神经解剖结构之间的形状变化。这两种方法都使用数字化教科书来表示典型正常神经解剖结构的复杂结构。定义了教科书坐标系上的概率变换,以适应教科书与其他正常神经解剖结构图像之间的形状差异。在第一种方法中,变换被约束为与可变形弹性固体的物理特性一致,在第二种方法中,变换被约束为与粘性流体的物理特性一致。本文给出的结果展示了如何使用单一的可变形教科书来适应正常形状变化。