Botha M, Pesce E-R, Blatch G L
Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa.
Int J Biochem Cell Biol. 2007;39(10):1781-803. doi: 10.1016/j.biocel.2007.02.011. Epub 2007 Feb 22.
Extensive structural and functional remodelling of Plasmodium falciparum (malaria)-infected erythrocytes follows the export of a range of proteins of parasite origin (exportome) across the parasitophorous vacuole into the host erythrocyte. The genome of P. falciparum encodes a diverse chaperone complement including at least 43 members of the heat shock protein 40kDa (Hsp40) family, and six members of the heat shock protein 70kDa (Hsp70) family. Nearly half of the Hsp40 proteins of P. falciparum are predicted to contain a PEXEL/HT (Plasmodium export element/host targeting signal) sequence motif, and hence are likely to be part of the exportome. In this review we critically evaluate the classification, sequence similarity and clustering, and possible interactors of the P. falciparum Hsp40 chaperone machinery. In addition to the types I, II and III Hsp40 proteins all exhibiting the signature J-domain, the P. falciparum genome also encodes a number of specialized Hsp40 proteins with a J-like domain, which we have categorized as type IV Hsp40 proteins. Analysis of the potential P. falciparum Hsp40 protein interaction network revealed connections predominantly with cytoskeletal and membrane proteins, transcriptional machinery, DNA repair and replication machinery, translational machinery, the proteasome and proteolytic enzymes, and enzymes involved in cellular physiology. Comparison of the Hsp40 proteins of P. falciparum to those of other apicomplexa reveals that most of the proteins (especially the PEXEL/HT-containing proteins) are unique to P. falciparum. Furthermore, very few of the P. falciparum Hsp40 proteins have human homologs, except for those proteins implicated in fundamental biological processes. Our analysis suggests that P. falciparum has evolved an expanded and specialized Hsp40 protein machinery to enable it successfully to invade and remodel the human erythrocyte, and we propose a model in which these proteins are involved in chaperone-mediated translocation, folding, assembly and regulation of parasite and host proteins.
疟原虫(疟疾)感染的红细胞会发生广泛的结构和功能重塑,这是一系列源自寄生虫的蛋白质(输出组)穿过寄生泡进入宿主红细胞后发生的。恶性疟原虫的基因组编码了多种伴侣蛋白,包括至少43个热休克蛋白40kDa(Hsp40)家族成员和6个热休克蛋白70kDa(Hsp70)家族成员。预计恶性疟原虫近一半的Hsp40蛋白含有PEXEL/HT(疟原虫输出元件/宿主靶向信号)序列基序,因此可能是输出组的一部分。在本综述中,我们严格评估了恶性疟原虫Hsp40伴侣蛋白机制的分类、序列相似性和聚类以及可能的相互作用蛋白。除了I型、II型和III型Hsp40蛋白都具有标志性的J结构域外,恶性疟原虫基因组还编码了一些具有类似J结构域的特殊Hsp40蛋白,我们将其归类为IV型Hsp40蛋白。对恶性疟原虫潜在Hsp40蛋白相互作用网络的分析表明其主要与细胞骨架和膜蛋白、转录机制、DNA修复和复制机制、翻译机制、蛋白酶体和蛋白水解酶以及参与细胞生理的酶存在联系。将恶性疟原虫的Hsp40蛋白与其他顶复门原虫的Hsp40蛋白进行比较发现,大多数蛋白(尤其是含PEXEL/HT的蛋白)在恶性疟原虫中是独特的。此外,恶性疟原虫的Hsp40蛋白中很少有人类同源物,除了那些参与基本生物学过程的蛋白。我们的分析表明,恶性疟原虫进化出了一种扩展且特殊的Hsp40蛋白机制,使其能够成功侵入并重塑人类红细胞,并且我们提出了一个模型,其中这些蛋白参与伴侣介导的寄生虫和宿主蛋白的转运、折叠、组装和调节。