Suppr超能文献

熵势中平均跃迁路径时间对势垒高度的依赖性特点。

Peculiarities of the Mean Transition Path Time Dependence on the Barrier Height in Entropy Potentials.

作者信息

Berezhkovskii Alexander M, Dagdug Leonardo, Bezrukov Sergey M

机构信息

Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States.

Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States.

出版信息

J Phys Chem B. 2020 Mar 26;124(12):2305-2310. doi: 10.1021/acs.jpcb.9b09595. Epub 2020 Mar 16.

Abstract

A transition path is a part of a one-dimensional trajectory of a diffusing particle, which starts from point and is terminated as soon as it comes to point for the first time. It is the trajectory's final segment that leaves point and goes to point without returning to point . The duration of this segment is called transition path time or, alternatively, direct transit time. We study the mean transition path time in monotonically increasing entropy potentials of the narrowing cones in spaces of different dimensions. We find that this time, normalized to its value in the absence of the potential, monotonically increases with the barrier height for the entropy potential of a narrowing two-dimensional cone, is independent of the barrier height for a narrowing three-dimensional cone, and monotonically decreases with the barrier height for narrowing cones in spaces of higher dimensions. Moreover, we show that as the barrier height tends to infinity, the normalized mean transition path time approaches its universal limiting value /3, where = 2, 3, 4, ... is the space dimension. This is in sharp contrast to the asymptotic behavior of this quantity in the case of a linear potential of mean force, for which it approaches zero in this limit.

摘要

一条跃迁路径是扩散粒子一维轨迹的一部分,它从点开始,一旦首次到达点就终止。它是轨迹的最后一段,离开点并前往点且不再回到点。这段的持续时间称为跃迁路径时间,或者也称为直接穿越时间。我们研究了不同维度空间中变窄圆锥的单调增加熵势中的平均跃迁路径时间。我们发现,该时间相对于其在无势情况下的值进行归一化后,对于变窄二维圆锥的熵势,它随势垒高度单调增加;对于变窄三维圆锥,它与势垒高度无关;对于更高维度空间中的变窄圆锥,它随势垒高度单调减少。此外,我们表明,当势垒高度趋于无穷大时,归一化平均跃迁路径时间趋近于其通用极限值 /3,其中 = 2, 3, 4, ... 是空间维度。这与平均力线性势情况下该量的渐近行为形成鲜明对比,在那种情况下它在此极限下趋近于零。

相似文献

1
Peculiarities of the Mean Transition Path Time Dependence on the Barrier Height in Entropy Potentials.
J Phys Chem B. 2020 Mar 26;124(12):2305-2310. doi: 10.1021/acs.jpcb.9b09595. Epub 2020 Mar 16.
2
Mean Direct-Transit and Looping Times as Functions of the Potential Shape.
J Phys Chem B. 2017 Jun 1;121(21):5455-5460. doi: 10.1021/acs.jpcb.7b04037. Epub 2017 May 17.
4
Exact Solutions for Distributions of First-Passage, Direct-Transit, and Looping Times in Symmetric Cusp Potential Barriers and Wells.
J Phys Chem B. 2019 May 2;123(17):3786-3796. doi: 10.1021/acs.jpcb.9b01616. Epub 2019 Apr 23.
5
Force-dependent mobility and entropic rectification in tubes of periodically varying geometry.
J Chem Phys. 2012 Jun 7;136(21):214110. doi: 10.1063/1.4726193.
6
Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion.
J Phys Chem B. 2011 Apr 14;115(14):3992-4002. doi: 10.1021/jp112393q. Epub 2011 Mar 18.
8
Stationary properties of maximum-entropy random walks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042149. doi: 10.1103/PhysRevE.92.042149. Epub 2015 Oct 23.
10
The nature of the free energy barriers to two-state folding.
Proteins. 2004 Oct 1;57(1):142-52. doi: 10.1002/prot.20172.

引用本文的文献

1
Enhancing carrier flux for efficient drug delivery in cancer tissues.
Biophys J. 2021 Dec 7;120(23):5255-5266. doi: 10.1016/j.bpj.2021.10.036. Epub 2021 Oct 30.

本文引用的文献

1
Probing microscopic conformational dynamics in folding reactions by measuring transition paths.
Curr Opin Chem Biol. 2019 Dec;53:68-74. doi: 10.1016/j.cbpa.2019.07.006. Epub 2019 Aug 31.
2
Exact Solutions for Distributions of First-Passage, Direct-Transit, and Looping Times in Symmetric Cusp Potential Barriers and Wells.
J Phys Chem B. 2019 May 2;123(17):3786-3796. doi: 10.1021/acs.jpcb.9b01616. Epub 2019 Apr 23.
3
Chasing a Protein's Tail: Detection of Polypeptide Translocation through Nanopores.
Biophys J. 2018 Feb 27;114(4):759-760. doi: 10.1016/j.bpj.2017.12.020.
4
Real-Time Nanopore-Based Recognition of Protein Translocation Success.
Biophys J. 2018 Feb 27;114(4):772-776. doi: 10.1016/j.bpj.2017.12.019. Epub 2018 Jan 12.
5
Protein folding transition path times from single molecule FRET.
Curr Opin Struct Biol. 2018 Feb;48:30-39. doi: 10.1016/j.sbi.2017.10.007. Epub 2017 Nov 5.
7
A new insight into diffusional escape from a biased cylindrical trap.
J Chem Phys. 2017 Sep 14;147(10):104103. doi: 10.1063/1.5002127.
9
Range of applicability of modified Fick-Jacobs equation in two dimensions.
J Chem Phys. 2015 Oct 28;143(16):164102. doi: 10.1063/1.4934223.
10
On the applicability of entropy potentials in transport problems.
Eur Phys J Spec Top. 2014 Dec;223(14):3063-3077. doi: 10.1140/epjst/e2014-02319-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验