Ulaganathan Venkatasubramanian, Buetow Lori, Hunter William N
Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
J Mol Biol. 2007 Jun 1;369(2):305-12. doi: 10.1016/j.jmb.2007.03.039. Epub 2007 Mar 21.
Lipid A is an integral component of the lipopolysaccharide (LPS) that forms the selective and protective outer monolayer of Gram-negative bacteria, and is essential for bacterial growth and viability. UDP-N-acetylglucosamine acyltransferase (LpxA) initiates lipid A biosynthesis by catalyzing the transfer of R-3-hydroxymyristic acid from acyl carrier protein to the 3'-hydroxyl group of UDP-GlcNAc. The enzyme is a homotrimer, and previous studies suggested that the active site lies within a positively charged cleft formed at the subunit-subunit interface. The crystal structure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site, with prominent hydrophilic interactions between highly conserved clusters of residues (Asn198, Glu200, Arg204 and Arg205) with UDP, and (Asp74, His125, His144 and Gln161) with the GlcNAc moiety. These interactions serve to bind and orient the substrate for catalysis. The crystallographic model supports previous results, which suggest that acylation occurs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed mechanism involving a catalytic dyad of His125 and Asp126. His125, the general base, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile. The Asp126 side-chain accepts a hydrogen bond from His125 and helps orient the general base to participate in catalysis. Comparisons with an LpxA:peptide inhibitor complex indicate that the peptide competes with both nucleotide and acyl carrier protein substrates.
脂多糖(LPS)是革兰氏阴性菌选择性和保护性外单层的组成部分,而脂多糖的核心成分脂多糖A对细菌的生长和存活至关重要。UDP-N-乙酰葡糖胺酰基转移酶(LpxA)通过催化R-3-羟基肉豆蔻酸从酰基载体蛋白转移至UDP-GlcNAc的3'-羟基来启动脂多糖A的生物合成。该酶是一个同三聚体,之前的研究表明其活性位点位于亚基-亚基界面形成的带正电荷的裂隙内。大肠杆菌LpxA与UDP-GlcNAc复合物的晶体结构揭示了底物结合位点的细节,高度保守的残基簇(Asn198、Glu200、Arg204和Arg205)与UDP以及(Asp74、His125、His144和Gln161)与GlcNAc部分之间存在显著的亲水相互作用。这些相互作用有助于结合底物并使其定向以进行催化。晶体学模型支持了之前的结果,即酰化反应是通过去质子化的UDP-GlcNAc对酰基供体的亲核攻击发生的,这是一种涉及His125和Asp126催化二元组的一般碱催化机制。His125作为一般碱,与UDP-GlcNAc的3'-羟基相互作用以产生亲核试剂。Asp126侧链接受来自His125的氢键,并有助于使一般碱定向以参与催化。与LpxA:肽抑制剂复合物的比较表明,该肽与核苷酸和酰基载体蛋白底物都存在竞争。