Robins Lori I, Williams Allison H, Raetz Christian R H
Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA.
Biochemistry. 2009 Jul 7;48(26):6191-201. doi: 10.1021/bi900629e.
The first step of lipid A biosynthesis is catalyzed by LpxA in Escherichia coli (EcLpxA), an acyltransferase selective for UDP-GlcNAc and R-3-hydroxymyristoyl-acyl carrier protein (ACP). Leptospira interrogans LpxA (LiLpxA) is extremely selective for R-3-hydroxylauroyl-ACP and an analogue of UDP-GlcNAc, designated UDP-GlcNAc3N, in which NH(2) replaces the GlcNAc 3-OH group. EcLpxA does not discriminate between UDP-GlcNAc and UDP-GlcNAc3N; however, E. coli does not make UDP-GlcNAc3N. With LiLpxA, R-3-hydroxylauroyl-methylphosphopantetheine efficiently substitutes for R-3-hydroxylauroyl-ACP. We now present crystal structures of free LiLpxA and its complexes with its product UDP-3-N-(R-3-hydroxylauroyl)-GlcNAc3N and with its substrate R-3-hydroxylauroyl-methylphosphopantetheine. The positions of the acyl chains of the R-3-hydroxylauroyl-methylphosphopantetheine and the UDP-3-N-(R-3-hydroxylauroyl)-GlcNAc3N are almost identical and are similar to that of the acyl chain in the EcLpxA/UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc complex. The selectivity of LiLpxA for UDP-GlcNAc3N may be explained by the orientation of the backbone carbonyl group of Q68, which differs by approximately 82 degrees from the corresponding Q73 carbonyl group in EcLpxA. This arrangement provides an extra hydrogen-bond acceptor for the 3-NH(2) group of UDP-GlcNAc3N in LiLpxA. The R-3-hydroxylauroyl selectivity of LiLpxA is explained by the position of the K171 side chain, which limits the length of the acyl-chain-binding groove. Our results support the role of LiLpxA H120 (which corresponds to EcLpxA H125) as the catalytic base and provide the first structural information about the orientation of the phosphopantetheine moiety during LpxA catalysis.
脂质A生物合成的第一步由大肠杆菌中的LpxA(EcLpxA)催化,LpxA是一种对UDP-GlcNAc和R-3-羟基肉豆蔻酰-酰基载体蛋白(ACP)具有选择性的酰基转移酶。问号钩端螺旋体LpxA(LiLpxA)对R-3-羟基月桂酰-ACP和UDP-GlcNAc的类似物UDP-GlcNAc3N具有极高的选择性,在UDP-GlcNAc3N中,NH(2)取代了GlcNAc的3-OH基团。EcLpxA无法区分UDP-GlcNAc和UDP-GlcNAc3N;然而,大肠杆菌并不产生UDP-GlcNAc3N。对于LiLpxA,R-3-羟基月桂酰-甲基磷酸泛酰巯基乙胺可有效替代R-3-羟基月桂酰-ACP。我们现在展示了游离LiLpxA及其与产物UDP-3-N-(R-3-羟基月桂酰)-GlcNAc3N以及底物R-3-羟基月桂酰-甲基磷酸泛酰巯基乙胺形成的复合物的晶体结构。R-3-羟基月桂酰-甲基磷酸泛酰巯基乙胺和UDP-3-N-(R-3-羟基月桂酰)-GlcNAc3N的酰基链位置几乎相同,且与EcLpxA/UDP-3-O-(R-3-羟基肉豆蔻酰)-GlcNAc复合物中的酰基链位置相似。LiLpxA对UDP-GlcNAc3N的选择性可能由Q68主链羰基的取向来解释,该取向与EcLpxA中相应的Q73羰基相差约82度。这种排列为LiLpxA中UDP-GlcNAc3N的3-NH(2)基团提供了一个额外的氢键受体。LiLpxA对R-3-羟基月桂酰的选择性可由K171侧链的位置来解释,该位置限制了酰基链结合凹槽的长度。我们的结果支持LiLpxA的H120(对应于EcLpxA的H125)作为催化碱基的作用,并提供了关于LpxA催化过程中磷酸泛酰巯基乙胺部分取向的首个结构信息。