Suppr超能文献

使用具有柔性羰基的布朗动力学在选择性过滤器中测量的KcsA的传导特性。

Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.

作者信息

Chung Shin-Ho, Corry Ben

机构信息

Research School of Biological Sciences, Australian National University, Canberra, Australia.

出版信息

Biophys J. 2007 Jul 1;93(1):44-53. doi: 10.1529/biophysj.106.098954. Epub 2007 Apr 13.

Abstract

In the narrow segment of an ion conducting pathway, it is likely that a permeating ion influences the positions of the nearby atoms that carry partial or full electronic charges. Here we introduce a method of incorporating the motion of charged atoms lining the pore into Brownian dynamics simulations of ion conduction. The movements of the carbonyl groups in the selectivity filter of the KcsA channel are calculated explicitly, allowing their bond lengths, bond angles, and dihedral angels to change in response to the forces acting upon them. By systematically changing the coefficients of bond stretching and of angle bending, the carbon and oxygen atoms can be made to fluctuate from their fixed positions by varying mean distances. We show that incorporating carbonyl motion in this way does not alter the mechanism of ion conduction and only has a small influence on the computed current. The slope conductance of the channel increases by approximately 25% when the root mean-square fluctuations of the carbonyl groups are increased from 0.01 to 0.61 A. The energy profiles and the number of resident ions in the channel remain unchanged. The method we utilized here can be extended to allow the movement of glutamate or aspartate side chains lining the selectivity filters of other ionic channels.

摘要

在离子传导途径的狭窄部分,渗透离子很可能会影响携带部分或全部电荷的附近原子的位置。在此,我们引入一种方法,将排列在孔道内的带电原子的运动纳入离子传导的布朗动力学模拟中。明确计算了KcsA通道选择性过滤器中羰基的运动,使其键长、键角和二面角能根据作用于它们的力而变化。通过系统地改变键拉伸和角弯曲的系数,可以使碳原子和氧原子通过改变平均距离而偏离其固定位置。我们表明,以这种方式纳入羰基运动会改变离子传导机制,对计算出的电流只有很小的影响。当羰基的均方根波动从0.01 Å增加到0.61 Å时,通道的斜率电导增加约25%。通道中的能量分布和驻留离子数量保持不变。我们在此使用的方法可以扩展,以允许其他离子通道选择性过滤器中排列的谷氨酸或天冬氨酸侧链运动。

相似文献

1
Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.
Biophys J. 2007 Jul 1;93(1):44-53. doi: 10.1529/biophysj.106.098954. Epub 2007 Apr 13.
2
Is the mobility of the pore walls and water molecules in the selectivity filter of KcsA channel functionally important?
Phys Chem Chem Phys. 2008 Apr 28;10(16):2249-55. doi: 10.1039/b719512e. Epub 2008 Feb 28.
3
On the classical vibrational coherence of carbonyl groups in the selectivity filter backbone of the KcsA ion channel.
J Integr Neurosci. 2015 Jun;14(2):195-206. doi: 10.1142/S0219635215500132. Epub 2015 May 20.
4
The predominant role of coordination number in potassium channel selectivity.
Biophys J. 2007 Oct 15;93(8):2635-43. doi: 10.1529/biophysj.107.108167. Epub 2007 Jun 15.
5
Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
Biophys J. 2000 Jun;78(6):2900-17. doi: 10.1016/S0006-3495(00)76831-7.
7
Quantum mechanical calculations of charge effects on gating the KcsA channel.
Biochim Biophys Acta. 2007 May;1768(5):1218-29. doi: 10.1016/j.bbamem.2007.01.021. Epub 2007 Feb 6.
8
Mechanism of activation at the selectivity filter of the KcsA K channel.
Elife. 2017 Oct 10;6:e25844. doi: 10.7554/eLife.25844.
9
Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies.
Biophys J. 2008 Aug;95(4):1600-11. doi: 10.1529/biophysj.107.126722. Epub 2008 May 2.
10
Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011902. doi: 10.1103/PhysRevE.74.011902. Epub 2006 Jul 5.

引用本文的文献

2
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.
3
Multi-ion versus single-ion conduction mechanisms can yield current rectification in biological ion channels.
J Biol Phys. 2014 Mar;40(2):109-19. doi: 10.1007/s10867-013-9338-4. Epub 2014 Jan 26.
5
Nonselective conduction in a mutated NaK channel with three cation-binding sites.
Biophys J. 2012 Nov 21;103(10):2106-14. doi: 10.1016/j.bpj.2012.10.004. Epub 2012 Nov 20.
6
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
7
Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.
PLoS One. 2011;6(6):e21204. doi: 10.1371/journal.pone.0021204. Epub 2011 Jun 23.
8
Computational studies of gramicidin permeation: an entry way sulfonate enhances cation occupancy at entry sites.
Biochim Biophys Acta. 2009 Jun;1788(6):1404-12. doi: 10.1016/j.bbamem.2009.03.021. Epub 2009 Apr 8.
9
The selectivity of K+ ion channels: testing the hypotheses.
Biophys J. 2008 Dec;95(11):5062-72. doi: 10.1529/biophysj.108.132035. Epub 2008 Sep 12.
10
Brownian dynamics study of flux ratios in sodium channels.
Eur Biophys J. 2008 Nov;38(1):45-52. doi: 10.1007/s00249-008-0353-5. Epub 2008 Jul 2.

本文引用的文献

1
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
J Comput Chem. 1999 Jun;20(8):786-798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B.
2
Dynamics of K+ ion conduction through Kv1.2.
Biophys J. 2006 Sep 15;91(6):L72-4. doi: 10.1529/biophysj.106.091926. Epub 2006 Jul 14.
3
Role of protein flexibility in ion permeation: a case study in gramicidin A.
Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13.
4
Mechanisms of valence selectivity in biological ion channels.
Cell Mol Life Sci. 2006 Feb;63(3):301-15. doi: 10.1007/s00018-005-5405-8.
5
Ion conduction and selectivity in K(+) channels.
Annu Rev Biophys Biomol Struct. 2005;34:153-71. doi: 10.1146/annurev.biophys.34.040204.144655.
6
Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
Biophys J. 2005 Jun;88(6):3745-61. doi: 10.1529/biophysj.104.058727. Epub 2005 Mar 11.
7
On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation.
J Gen Physiol. 2004 Dec;124(6):679-90. doi: 10.1085/jgp.200409111.
8
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验