Suppr超能文献

采用局域密度近似、广义梯度近似、元广义梯度近似和杂化泛函的含时密度泛函理论对芯激发的描述

Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals.

作者信息

Imamura Yutaka, Otsuka Takao, Nakai Hiromi

机构信息

Department of Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

出版信息

J Comput Chem. 2007 Sep;28(12):2067-74. doi: 10.1002/jcc.20724.

Abstract

Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.

摘要

采用含时密度泛函理论(TDDFT)研究了包括氢、碳、氮、氧和氟原子在内的几种分子垂直芯激发能的交换关联泛函依赖性。对于局域密度近似(LDA)、广义梯度近似(GGA)和元广义梯度近似(meta-GGA),计算得到的X1s→π*激发能(X = C、N、O和F)被严重低估了超过13电子伏特。另一方面,含时哈特里-福克(TDHF)方法高估激发能超过6电子伏特。杂化泛函的表现优于纯TDDFT,因为HF交换项弥补了纯TDDFT的低估问题。在这些杂化泛函中,包含50% HF交换项的Becke-Half-and-Half-Lee-Yang-Parr(BHHLYP)泛函在芯激发方面提供了最小的误差。我们还发现了一个系统性趋势,即TDHF和采用LDA、GGA和meta-GGA泛函的TDDFT的偏差表现出强烈的原子依赖性。也就是说,对于较重的原子,它们的偏差会变得更大,而杂化泛函的原子依赖性则显著较小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验