Suppr超能文献

在存在连锁情况下检验关联性——一种针对二元性状的强大得分法。

Testing association in the presence of linkage--a powerful score for binary traits.

作者信息

Jonasdottir Gudrun, Humphreys Keith, Palmgren Juni

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institute, S-17177 Stockholm, Sweden.

出版信息

Genet Epidemiol. 2007 Sep;31(6):528-40. doi: 10.1002/gepi.20226.

Abstract

We present a score for testing association in the presence of linkage for binary traits. The score is robust to varying degrees of linkage, and it is valid under any ascertainment scheme based on trait values as well as under population stratification. The score test is derived from a mixed effects model where population level association is modeled using a fixed effect and where correlation among related individuals is allowed for by using log-gamma random effects. The score, as presented in this paper, does not assume full information about the inheritance pattern in families or parental genotypes. We compare the score to the semi-parametric family-based association test (FBAT), which has won ground because of its flexible and simple form. We show that a random effects formulation of co-inheritance can improve the power substantially. We apply the method to data from the Collaborative Study on the Genetics of Alcoholism. We compare our findings to previously published results.

摘要

我们提出了一种用于在二元性状存在连锁情况下检验关联性的评分方法。该评分对不同程度的连锁具有稳健性,并且在基于性状值的任何确定方案以及群体分层情况下都是有效的。评分检验源自一个混合效应模型,其中群体水平的关联性使用固定效应进行建模,并且通过使用对数伽马随机效应来考虑相关个体之间的相关性。本文所呈现的评分方法并不假定关于家族遗传模式或亲本基因型的完整信息。我们将该评分与半参数基于家系的关联检验(FBAT)进行比较,FBAT因其灵活且简单的形式而受到青睐。我们表明,共遗传的随机效应公式可以显著提高检验效能。我们将该方法应用于酒精中毒遗传学合作研究的数据。我们将我们的研究结果与先前发表的结果进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验