Diao G, Lin D Y
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599-7420, USA.
Genet Epidemiol. 2006 May;30(4):301-13. doi: 10.1002/gepi.20145.
Association mapping based on family studies can identify genes that influence complex human traits while providing protection against population stratification. Because no gene is likely to have a very large effect on a complex trait, most family studies have limited power. Among the commonly used family-based tests of association for quantitative traits, the quantitative transmission-disequilibrium tests (QTDT) based on the variance-components model is the most flexible and most powerful. This method assumes that the trait values are normally distributed. Departures from normality can inflate the type I error and reduce the power. Although the family-based association tests (FBAT) and pedigree disequilibrium tests (PDT) do not require normal traits, nonnormality can also result in loss of power. In many cases, approximate normality can be achieved by transforming the trait values. However, the true transformation is unknown, and incorrect transformations may compromise the type I error and power. We propose a novel class of association tests for arbitrarily distributed quantitative traits by allowing the true transformation function to be completely unspecified and empirically estimated from the data. Extensive simulation studies showed that the new methods provide accurate control of the type I error and can be substantially more powerful than the existing methods. We applied the new methods to the Collaborative Study on the Genetics of Alcoholism and discovered significant association of single nucleotide polymorphisms (SNP) tsc0022400 on chromosome 7 with the quantitative electrophysiological phenotype TTTH1, which was not detected by any existing methods. We have implemented the new methods in a freely available computer program.
基于家系研究的关联作图能够识别影响复杂人类性状的基因,同时防范群体分层问题。由于没有哪个基因可能对复杂性状产生非常大的影响,大多数家系研究的效能有限。在常用的基于家系的数量性状关联检验中,基于方差成分模型的数量传递不平衡检验(QTDT)最为灵活且效能最强。该方法假定性状值呈正态分布。偏离正态分布会使I型错误膨胀并降低效能。尽管基于家系的关联检验(FBAT)和系谱不平衡检验(PDT)并不要求性状呈正态分布,但非正态性也可能导致效能损失。在许多情况下,通过对性状值进行变换可实现近似正态分布。然而,真正的变换未知,错误的变换可能会损害I型错误和效能。我们提出了一类新颖的关联检验方法,用于任意分布的数量性状,方法是允许真实变换函数完全未指定,并从数据中进行经验估计。大量模拟研究表明,新方法能够准确控制I型错误,并且效能可能比现有方法显著更高。我们将新方法应用于酒精中毒遗传学合作研究,发现7号染色体上的单核苷酸多态性(SNP)tsc0022400与定量电生理表型TTTH1存在显著关联,这是现有任何方法都未检测到的。我们已将新方法实现在一个免费的计算机程序中。