Weinstein Randall K, Reid Michael S, Lee Robert H
Georgia Institute of Technology, Atlanta, GA 30332, USA.
IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):83-93. doi: 10.1109/TNSRE.2007.891379.
Field programmable gate arrays (FPGAs) have previously been shown as high-performance platforms for neural-modeling applications. Implementations have traditionally been time-consuming and error-prone, requiring the neural modeler to work outside of their expert domain. This paper demonstrates a new approach to the development of neural models using an auto-generation toolkit. This design tool enables model construction-level alterations (e.g., adjustment of model population size or insertion/deletion of an ionic conductance) within hours and parameter changes on-the-fly. The approach is validated on a 40-neuron pre-Bötzinger complex population model consisting of Hodgkin-Huxley style conductances and fully interconnected synapses. A total of 1880 parameters are on-the-fly user tunable on a free-running model. The resulting implemented model performs at a theoretical 8.7 x real-time utilizing 90% of logic elements within a Xilinx Virtex-4 XC4VSX35-fg676-10 FPGA.
现场可编程门阵列(FPGA)此前已被证明是用于神经建模应用的高性能平台。传统的实现方式既耗时又容易出错,要求神经建模人员在其专业领域之外开展工作。本文展示了一种使用自动生成工具包来开发神经模型的新方法。这种设计工具能够在数小时内实现模型构建层面的更改(例如,调整模型群体大小或插入/删除离子电导),并能即时更改参数。该方法在一个由霍奇金-赫胥黎式电导和全互连突触组成的40神经元前包钦格复合体群体模型上得到了验证。在一个自由运行的模型上,共有1880个参数可供用户即时调整。最终实现的模型在理论上以8.7倍实时速度运行,占用了赛灵思Virtex-4 XC4VSX35-fg676-10 FPGA内90%的逻辑元件。