Suppr超能文献

用于实时信号处理和控制应用的脉冲神经网络实现:一种经过模型验证的现场可编程门阵列方法。

Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach.

作者信息

Pearson Martin J, Pipe A G, Mitchinson B, Gurney K, Melhuish C, Gilhespy I, Nibouche M

机构信息

University of the West of England, Intelligent Autonomous Systems Laboratory, Frenchay, Bristol BS16 1QY, UK.

出版信息

IEEE Trans Neural Netw. 2007 Sep;18(5):1472-87. doi: 10.1109/tnn.2007.891203.

Abstract

In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-fire (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate array (FPGA). They have successfully simulated networks of over 1000 neurons configured using biologically plausible models of mammalian neural systems. The neuroprocessor has been designed to be employed primarily for use on mobile robotic vehicles, allowing bio-inspired neural processing models to be integrated directly into real-world control environments. When a neuroprocessor has been designed to act as part of the closed-loop system of a feedback controller, it is imperative to maintain strict real-time performance at all times, in order to maintain integrity of the control system. This resulted in the reevaluation of some of the architectural features of existing hardware for biologically plausible neural networks (NNs). In addition, we describe a development system for rapidly porting an underlying model (based on floating-point arithmetic) to the fixed-point representation of the FPGA-based neuroprocessor, thereby allowing validation of the hardware architecture. The developmental system environment facilitates the cooperation of computational neuroscientists and engineers working on embodied (robotic) systems with neural controllers, as demonstrated by our own experience on the Whiskerbot project, in which we developed models of the rodent whisker sensory system.

摘要

在本文中,我们展示了用于对大规模泄漏积分发放(LIF)神经元网络进行建模的硬件处理架构的两个版本;相对于第一个版本,第二个版本具有性能增强特性。这两个版本的架构均使用定点运算,并已使用单个现场可编程门阵列(FPGA)实现。它们已成功模拟了使用哺乳动物神经系统的生物学合理模型配置的1000多个神经元的网络。该神经处理器被设计主要用于移动机器人车辆,从而使受生物启发的神经处理模型能够直接集成到现实世界的控制环境中。当神经处理器被设计为反馈控制器的闭环系统的一部分时,必须始终保持严格的实时性能,以维持控制系统的完整性。这导致对用于生物学合理神经网络(NN)的现有硬件的一些架构特性进行重新评估。此外,我们描述了一种开发系统,用于将基础模型(基于浮点运算)快速移植到基于FPGA的神经处理器的定点表示形式,从而能够对硬件架构进行验证。如我们在晶须机器人项目中的自身经验所示,该开发系统环境促进了从事具有神经控制器的实体(机器人)系统研究的计算神经科学家和工程师之间的合作,在该项目中我们开发了啮齿动物晶须感觉系统的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验