Miyoshi Daisuke, Karimata Hisae, Wang Zhong-Ming, Koumoto Kazuya, Sugimoto Naoki
Frontier Institute for Biomolecular Engineering Research, and Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Japan.
J Am Chem Soc. 2007 May 9;129(18):5919-25. doi: 10.1021/ja068707u. Epub 2007 Apr 18.
Development of a guanine nanowire (G-wire) that is controllable and can be switched by external signals is important for the creation of molecular electronic technologies. Here, we constructed a G-wire in which the thymines of the main chain of d(G4T4G4) were replaced with 2,2'-bipyridine units, which have two aromatic rings that rotate arbitrarily upon coordination with metal ions. Circular dichroism of the DNA oligonucleotides with or without the 2,2'-bipyridine unit showed that divalent metal ions induce the bipyridine-containing oligonucleotide to switch from an antiparallel to a parallel G-quadruplex. Native polyacrylamide gel electrophoresis showed that the parallel-stranded G-quadruplex DNA had a high-order structure. Circular dichroism and native gel electrophoresis analyses suggested that adding Na2EDTA causes a reverse structural transition from a parallel-stranded high-order structure to an antiparallel G-quadruplex. Moreover, atomic force microscopy showed a long nanowire ( approximately 200 nm) in the presence of Ni2+ but no significant image in the absence of Ni2+ or in the presence of both Ni2+ and Na2EDTA. These observations revealed that the parallel-stranded high-order structure is a G-wire containing numerous DNA oligonucleotide strands bound together via divalent metal ion-2,2'-bipyridine complexes. Finally, we found that alternating addition of Ni2+ and Na2EDTA can cycle the G-wire between the high-order and disorganized structures, with an average cycling efficiency of 0.95 (i.e., 5% loss per cycle). These results demonstrate that a DNA oligonucleotide incorporating the 2,2'-bipyridine unit acts as a G-wire switch that can be controlled by chemical input signals, namely, divalent metal ions.
开发一种可控且能被外部信号切换的鸟嘌呤纳米线(G 线)对于分子电子技术的创建至关重要。在此,我们构建了一种 G 线,其中 d(G4T4G4)主链的胸腺嘧啶被 2,2'-联吡啶单元取代,该单元有两个芳香环,与金属离子配位时可任意旋转。含或不含 2,2'-联吡啶单元的 DNA 寡核苷酸的圆二色性表明,二价金属离子诱导含联吡啶的寡核苷酸从反平行 G 四链体转变为平行 G 四链体。非变性聚丙烯酰胺凝胶电泳表明,平行链 G 四链体 DNA 具有高阶结构。圆二色性和非变性凝胶电泳分析表明,添加 Na2EDTA 会导致从平行链高阶结构到反平行 G 四链体的反向结构转变。此外,原子力显微镜显示在存在 Ni2+时出现长纳米线(约 200 nm),而在不存在 Ni2+或同时存在 Ni2+和 Na2EDTA 时无明显图像。这些观察结果表明,平行链高阶结构是一种 G 线,包含通过二价金属离子 - 2,2'-联吡啶配合物结合在一起的众多 DNA 寡核苷酸链。最后,我们发现交替添加 Ni2+和 Na2EDTA 可使 G 线在高阶结构和无序结构之间循环,平均循环效率为 0.95(即每循环损失 5%)。这些结果表明,掺入 2,2'-联吡啶单元的 DNA 寡核苷酸可作为一种 G 线开关,可由化学输入信号即二价金属离子控制。