Suppr超能文献

捕食者-被捕食者相互作用的随机动力学。

Stochastic dynamics of predator-prey interactions.

机构信息

Departments of Electrical and Computer Engineering, Biomedical Engineering and Mathematical Sciences, University of Delaware, Newark, DE, United States of America.

出版信息

PLoS One. 2021 Aug 12;16(8):e0255880. doi: 10.1371/journal.pone.0255880. eCollection 2021.

Abstract

The interaction between a consumer (such as, a predator or a parasitoid) and a resource (such as, a prey or a host) forms an integral motif in ecological food webs, and has been modeled since the early 20th century starting from the seminal work of Lotka and Volterra. While the Lotka-Volterra predator-prey model predicts a neutrally stable equilibrium with oscillating population densities, a density-dependent predator attack rate is known to stabilize the equilibrium. Here, we consider a stochastic formulation of the Lotka-Volterra model where the prey's reproduction rate is a random process, and the predator's attack rate depends on both the prey and predator population densities. Analysis shows that increasing the sensitivity of the attack rate to the prey density attenuates the magnitude of stochastic fluctuations in the population densities. In contrast, these fluctuations vary non-monotonically with the sensitivity of the attack rate to the predator density with an optimal level of sensitivity minimizing the magnitude of fluctuations. Interestingly, our systematic study of the predator-prey correlations reveals distinct signatures depending on the form of the density-dependent attack rate. In summary, stochastic dynamics of nonlinear Lotka-Volterra models can be harnessed to infer density-dependent mechanisms regulating predator-prey interactions. Moreover, these mechanisms can have contrasting consequences on population density fluctuations, with predator-dependent attack rates amplifying stochasticity, while prey-dependent attack rates countering to buffer fluctuations.

摘要

消费者(如捕食者或寄生蜂)与资源(如猎物或宿主)之间的相互作用构成了生态食物网的基本模式,自 20 世纪初以来,Lotka 和 Volterra 的开创性工作就开始对其进行建模。虽然 Lotka-Volterra 捕食者-猎物模型预测具有中性稳定平衡的振荡种群密度,但已知密度依赖的捕食者攻击率可以稳定平衡。在这里,我们考虑了 Lotka-Volterra 模型的随机形式,其中猎物的繁殖率是一个随机过程,而捕食者的攻击率取决于猎物和捕食者的种群密度。分析表明,增加攻击率对猎物密度的敏感性会减弱种群密度的随机波动幅度。相比之下,这些波动随攻击率对捕食者密度的敏感性呈非单调变化,最优敏感性水平最小化了波动幅度。有趣的是,我们对捕食者-猎物相关性的系统研究揭示了依赖密度的攻击率形式的不同特征。总之,非线性 Lotka-Volterra 模型的随机动力学可用于推断调节捕食者-猎物相互作用的密度依赖性机制。此外,这些机制对种群密度波动有相反的影响,捕食者依赖的攻击率放大随机性,而猎物依赖的攻击率则缓冲波动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89bb/8360563/e0357969087d/pone.0255880.g001.jpg

相似文献

1
Stochastic dynamics of predator-prey interactions.
PLoS One. 2021 Aug 12;16(8):e0255880. doi: 10.1371/journal.pone.0255880. eCollection 2021.
3
Evolutionary dynamics of prey exploitation in a metapopulation of predators.
Am Nat. 2002 Feb;159(2):172-89. doi: 10.1086/324788.
4
Evolution towards oscillation or stability in a predator-prey system.
Proc Biol Sci. 2010 Oct 22;277(1697):3163-71. doi: 10.1098/rspb.2010.0691. Epub 2010 May 26.
5
Oscillations in a size-structured prey-predator model.
Math Biosci. 2010 Nov;228(1):31-44. doi: 10.1016/j.mbs.2010.08.005. Epub 2010 Aug 25.
6
A derivation of Holling's type I, II and III functional responses in predator-prey systems.
J Theor Biol. 2013 Jun 21;327:11-22. doi: 10.1016/j.jtbi.2013.02.017. Epub 2013 Mar 13.
7
Stochastic Lotka-Volterra food chains.
J Math Biol. 2018 Jul;77(1):135-163. doi: 10.1007/s00285-017-1192-8. Epub 2017 Nov 17.
9
Stochasticity in host-parasitoid models informs mechanisms regulating population dynamics.
Sci Rep. 2021 Aug 18;11(1):16749. doi: 10.1038/s41598-021-96212-y.
10
Fluctuations and correlations in lattice models for predator-prey interaction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):040903. doi: 10.1103/PhysRevE.73.040903. Epub 2006 Apr 26.

引用本文的文献

1
Abstraction-based segmental simulation of reaction networks using adaptive memoization.
BMC Bioinformatics. 2024 Nov 8;25(1):350. doi: 10.1186/s12859-024-05966-5.
2
Fundamental limits of parasitoid-driven host population suppression: Implications for biological control.
PLoS One. 2023 Dec 22;18(12):e0295980. doi: 10.1371/journal.pone.0295980. eCollection 2023.
3
A comparative approach to stabilizing mechanisms between discrete- and continuous-time consumer-resource models.
PLoS One. 2022 Apr 12;17(4):e0265825. doi: 10.1371/journal.pone.0265825. eCollection 2022.

本文引用的文献

1
Attack by a common parasitoid stabilizes population dynamics of multi-host communities.
J Theor Biol. 2021 Dec 21;531:110897. doi: 10.1016/j.jtbi.2021.110897. Epub 2021 Sep 8.
2
Global redistribution and local migration in semi-discrete host-parasitoid population dynamic models.
Math Biosci. 2020 Sep;327:108409. doi: 10.1016/j.mbs.2020.108409. Epub 2020 Jun 29.
3
Asymptotic stability of a modified Lotka-Volterra model with small immigrations.
Sci Rep. 2018 May 4;8(1):7029. doi: 10.1038/s41598-018-25436-2.
4
Population cycles: generalities, exceptions and remaining mysteries.
Proc Biol Sci. 2018 Mar 28;285(1875). doi: 10.1098/rspb.2017.2841.
5
Stochastic Lotka-Volterra food chains.
J Math Biol. 2018 Jul;77(1):135-163. doi: 10.1007/s00285-017-1192-8. Epub 2017 Nov 17.
6
Exact lower and upper bounds on stationary moments in stochastic biochemical systems.
Phys Biol. 2017 Jun 29;14(4):04LT01. doi: 10.1088/1478-3975/aa75c6.
7
Fluctuations-induced coexistence in public goods dynamics.
Phys Biol. 2016 Oct 18;13(5):056006. doi: 10.1088/1478-3975/13/5/056006.
8
The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.
Math Biosci. 2016 Feb;272:54-63. doi: 10.1016/j.mbs.2015.11.011. Epub 2015 Dec 11.
9
Comparison of different moment-closure approximations for stochastic chemical kinetics.
J Chem Phys. 2015 Nov 14;143(18):185101. doi: 10.1063/1.4934990.
10
Multivariate moment closure techniques for stochastic kinetic models.
J Chem Phys. 2015 Sep 7;143(9):094107. doi: 10.1063/1.4929837.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验