Chen Chwen-Lih, Zhang Liwen, Yeh Alexander, Chen Chun-An, Green-Church Kari B, Zweier Jay L, Chen Yeong-Renn
Davis Heart & Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
Biochemistry. 2007 May 15;46(19):5754-65. doi: 10.1021/bi602580c. Epub 2007 Apr 20.
The generation of reactive oxygen species in mitochondria acts as a redox signal in triggering cellular events such as apoptosis, proliferation, and senescence. Overproduction of superoxide (O2*-) and O2*--derived oxidants changes the redox status of the mitochondrial GSH pool. An electron transport protein, mitochondrial complex I, is the major host of reactive/regulatory protein thiols. An important response of protein thiols to oxidative stress is to reversibly form protein mixed disulfide via S-glutathiolation. Exposure of complex I to oxidized GSH, GSSG, resulted in specific S-glutathiolation at the 51 kDa and 75 kDa subunits (Beer et al. (2004) J. Biol. Chem. 279, 47939-47951). Here, to investigate the molecular mechanism of S-glutathiolation of complex I, we prepared isolated bovine complex I under nonreducing conditions and employed the techniques of mass spectrometry and EPR spin trapping for analysis. LC/MS/MS analysis of tryptic digests of the 51 kDa and 75 kDa polypeptides from glutathiolated complex I (GS-NQR) revealed that two specific cysteines (C206 and C187) of the 51 kDa subunit and one specific cysteine (C367) of the 75 kDa subunit were involved in redox modifications with GS binding. The electron transfer activity (ETA) of GS-NQR in catalyzing NADH oxidation by Q1 was significantly enhanced. However, O2*- generation activity (SGA) mediated by GS-NQR suffered a mild loss as measured by EPR spin trapping, suggesting the protective role of S-glutathiolation in the intact complex I. Exposure of NADH dehydrogenase (NDH), the flavin subcomplex of complex I, to GSSG resulted in specific S-glutathiolation on the 51 kDa subunit. Both ETA and SGA of S-glutathiolated NDH (GS-NDH) decreased in parallel as the dosage of GSSG increased. LC/MS/MS analysis of a tryptic digest of the 51 kDa subunit from GS-NDH revealed that C206, C187, and C425 were glutathiolated. C425 of the 51 kDa subunit is a ligand residue of the 4Fe-4S N3 center, suggesting that destruction of 4Fe-4S is the major mechanism involved in the inhibition of NDH. The result also implies that S-glutathiolation of the 75 kDa subunit may play a role in protecting the 4Fe-4S cluster of the 51 kDa subunit from redox modification when complex I is exposed to redox change in the GSH pool.
线粒体中活性氧的产生作为一种氧化还原信号,触发细胞凋亡、增殖和衰老等细胞事件。超氧化物(O2*-)和源自O2的氧化剂过量产生会改变线粒体谷胱甘肽(GSH)池的氧化还原状态。电子传递蛋白线粒体复合物I是活性/调节性蛋白硫醇的主要宿主。蛋白硫醇对氧化应激的一个重要反应是通过S-谷胱甘肽化可逆地形成蛋白混合二硫键。将复合物I暴露于氧化型谷胱甘肽(GSSG)中,会导致51 kDa和75 kDa亚基发生特异性S-谷胱甘肽化(Beer等人,(2004年)《生物化学杂志》279卷,47939 - 47951页)。在此,为了研究复合物I的S-谷胱甘肽化的分子机制,我们在非还原条件下制备了分离的牛复合物I,并采用质谱和电子顺磁共振自旋捕获技术进行分析。对谷胱甘肽化复合物I(GS-NQR)的51 kDa和75 kDa多肽的胰蛋白酶消化产物进行液相色谱/串联质谱(LC/MS/MS)分析,结果显示51 kDa亚基的两个特定半胱氨酸(C206和C187)以及75 kDa亚基的一个特定半胱氨酸(C367)参与了与GS结合的氧化还原修饰。GS-NQR催化Q1氧化NADH的电子传递活性(ETA)显著增强。然而,通过电子顺磁共振自旋捕获测量,GS-NQR介导的O2-生成活性(SGA)略有下降,这表明S-谷胱甘肽化在完整的复合物I中具有保护作用。将复合物I的黄素亚复合物NADH脱氢酶(NDH)暴露于GSSG中,会导致51 kDa亚基发生特异性S-谷胱甘肽化。随着GSSG剂量的增加,S-谷胱甘肽化的NDH(GS-NDH)的ETA和SGA平行下降。对GS-NDH的51 kDa亚基的胰蛋白酶消化产物进行LC/MS/MS分析,结果显示C206、C187和C425发生了谷胱甘肽化。51 kDa亚基的C425是4Fe-4S N3中心的配体残基,这表明4Fe-4S的破坏是NDH受到抑制的主要机制。该结果还意味着,当复合物I暴露于GSH池的氧化还原变化时,75 kDa亚基的S-谷胱甘肽化可能在保护51 kDa亚基的4Fe-4S簇免受氧化还原修饰方面发挥作用。