Suppr超能文献

使用分层贝叶斯模型学习过度假设。

Learning overhypotheses with hierarchical Bayesian models.

作者信息

Kemp Charles, Perfors Amy, Tenenbaum Joshua B

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Dev Sci. 2007 May;10(3):307-21. doi: 10.1111/j.1467-7687.2007.00585.x.

Abstract

Inductive learning is impossible without overhypotheses, or constraints on the hypotheses considered by the learner. Some of these overhypotheses must be innate, but we suggest that hierarchical Bayesian models can help to explain how the rest are acquired. To illustrate this claim, we develop models that acquire two kinds of overhypotheses--overhypotheses about feature variability (e.g. the shape bias in word learning) and overhypotheses about the grouping of categories into ontological kinds like objects and substances.

摘要

没有过度假设,即没有学习者对所考虑假设的约束,归纳学习是不可能的。其中一些过度假设必定是先天的,但我们认为分层贝叶斯模型有助于解释其余的过度假设是如何习得的。为了说明这一观点,我们开发了一些模型,这些模型可以习得两种过度假设——关于特征变异性的过度假设(例如,单词学习中的形状偏好)以及关于将类别分组为物体和物质等本体类别的过度假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验