Huang Lan, Kulldorff Martin, Gregorio David
Statistical Research and Applications Branch, Division of Cancer Control and Population Sciences, National Cancer Institute (Contractor), 6116 Executive Boulevard, Rockville, Maryland 20852, USA.
Biometrics. 2007 Mar;63(1):109-18. doi: 10.1111/j.1541-0420.2006.00661.x.
Spatial scan statistics with Bernoulli and Poisson models are commonly used for geographical disease surveillance and cluster detection. These models, suitable for count data, were not designed for data with continuous outcomes. We propose a spatial scan statistic based on an exponential model to handle either uncensored or censored continuous survival data. The power and sensitivity of the developed model are investigated through intensive simulations. The method performs well for different survival distribution functions including the exponential, gamma, and log-normal distributions. We also present a method to adjust the analysis for covariates. The cluster detection method is illustrated using survival data for men diagnosed with prostate cancer in Connecticut from 1984 to 1995.
具有伯努利和泊松模型的空间扫描统计通常用于地理疾病监测和聚类检测。这些适用于计数数据的模型并非为具有连续结果的数据而设计。我们提出一种基于指数模型的空间扫描统计方法,以处理未删失或删失的连续生存数据。通过大量模拟研究了所开发模型的功效和灵敏度。该方法对于包括指数分布、伽马分布和对数正态分布在内的不同生存分布函数都表现良好。我们还提出了一种针对协变量调整分析的方法。使用1984年至1995年康涅狄格州被诊断患有前列腺癌的男性的生存数据说明了聚类检测方法。