Suppr超能文献

大肠杆菌DNA聚合酶I在赋予dnaN159突变株生存能力中的作用。

Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain.

作者信息

Maul Robert W, Sanders Laurie H, Lim James B, Benitez Rosemary, Sutton Mark D

机构信息

Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.

出版信息

J Bacteriol. 2007 Jul;189(13):4688-95. doi: 10.1128/JB.00476-07. Epub 2007 Apr 20.

Abstract

The Escherichia coli dnaN159 allele encodes a mutant form of the beta-sliding clamp (beta159) that is impaired for interaction with the replicative DNA polymerase (Pol), Pol III. In addition, strains bearing the dnaN159 allele require functional Pol I for viability. We have utilized a combination of genetic and biochemical approaches to characterize the role(s) played by Pol I in the dnaN159 strain. Our findings indicate that elevated levels of Pol I partially suppress the temperature-sensitive growth phenotype of the dnaN159 strain. In addition, we demonstrate that the beta clamp stimulates the processivity of Pol I in vitro and that beta159 is impaired for this activity. The reduced ability of beta159 to stimulate Pol I in vitro correlates with our finding that single-stranded DNA (ssDNA) gap repair is impaired in the dnaN159 strain. Taken together, these results suggest that (i) the beta clamp-Pol I interaction may be important for proper Pol I function in vivo and (ii) in the absence of Pol I, ssDNA gaps may persist in the dnaN159 strain, leading to lethality of the dnaN159 DeltapolA strain.

摘要

大肠杆菌dnaN159等位基因编码β滑动夹(β159)的一种突变形式,该突变形式与复制性DNA聚合酶(Pol)Pol III的相互作用受损。此外,携带dnaN159等位基因的菌株需要功能性的Pol I才能存活。我们利用遗传学和生物化学方法相结合来表征Pol I在dnaN159菌株中所起的作用。我们的研究结果表明,Pol I水平的升高部分抑制了dnaN159菌株的温度敏感生长表型。此外,我们证明β夹在体外刺激Pol I的持续合成能力,并且β159在该活性方面受损。β159在体外刺激Pol I的能力降低与我们的发现相关,即dnaN159菌株中的单链DNA(ssDNA)缺口修复受损。综上所述,这些结果表明:(i)β夹与Pol I的相互作用对于Pol I在体内的正常功能可能很重要;(ii)在没有Pol I的情况下,dnaN159菌株中可能会持续存在ssDNA缺口,导致dnaN159 DeltapolA菌株死亡。

相似文献

1
Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain.
J Bacteriol. 2007 Jul;189(13):4688-95. doi: 10.1128/JB.00476-07. Epub 2007 Apr 20.
2
The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
J Bacteriol. 2004 Oct;186(20):6738-48. doi: 10.1128/JB.186.20.6738-6748.2004.
4
Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.
DNA Repair (Amst). 2006 Mar 7;5(3):312-23. doi: 10.1016/j.dnarep.2005.10.011. Epub 2005 Dec 9.
6
Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp.
Mol Microbiol. 2007 Aug;65(3):811-27. doi: 10.1111/j.1365-2958.2007.05828.x.
7
8
Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli.
J Mol Biol. 2009 Mar 20;387(1):74-91. doi: 10.1016/j.jmb.2009.01.050. Epub 2009 Jan 30.
9
Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase.
J Bacteriol. 2012 Jul;194(14):3589-600. doi: 10.1128/JB.00520-12. Epub 2012 Apr 27.
10
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant.
J Bacteriol. 2008 Mar;190(5):1730-42. doi: 10.1128/JB.01463-07. Epub 2007 Dec 21.

引用本文的文献

1
Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities.
Biology (Basel). 2024 Mar 22;13(4):204. doi: 10.3390/biology13040204.
3
NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence.
PLoS One. 2016 Jun 8;11(6):e0157165. doi: 10.1371/journal.pone.0157165. eCollection 2016.
6
Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase.
J Bacteriol. 2012 Jul;194(14):3589-600. doi: 10.1128/JB.00520-12. Epub 2012 Apr 27.
10
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair.
J Bacteriol. 2010 Jul;192(13):3452-63. doi: 10.1128/JB.01435-09. Epub 2010 May 7.

本文引用的文献

1
Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.
Crit Rev Biochem Mol Biol. 2006 May-Jun;41(3):179-208. doi: 10.1080/10409230600648751.
2
The beta sliding clamp binds to multiple sites within MutL and MutS.
J Biol Chem. 2006 May 19;281(20):14340-9. doi: 10.1074/jbc.M601264200. Epub 2006 Mar 16.
3
Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.
DNA Repair (Amst). 2006 Mar 7;5(3):312-23. doi: 10.1016/j.dnarep.2005.10.011. Epub 2005 Dec 9.
4
6
The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
J Bacteriol. 2004 Oct;186(20):6738-48. doi: 10.1128/JB.186.20.6738-6748.2004.
9
Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome.
DNA Repair (Amst). 2003 May 13;2(5):593-608. doi: 10.1016/s1568-7864(03)00024-7.
10
Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells.
DNA Repair (Amst). 2002 Sep 4;1(9):703-8. doi: 10.1016/s1568-7864(02)00106-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验