Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street Santa Cruz, CA 95060, USA.
Nucleic Acids Res. 2011 Sep 1;39(16):7020-33. doi: 10.1093/nar/gkr157. Epub 2011 May 26.
DNA polymerase I (pol I) processes RNA primers during lagging-strand synthesis and fills small gaps during DNA repair reactions. However, it is unclear how pol I and pol III work together during replication and repair or how extensive pol I processing of Okazaki fragments is in vivo. Here, we address these questions by analyzing pol I mutations generated through error-prone replication of ColE1 plasmids. The data were obtained by direct sequencing, allowing an accurate determination of the mutation spectrum and distribution. Pol I's mutational footprint suggests: (i) during leading-strand replication pol I is gradually replaced by pol III over at least 1.3 kb; (ii) pol I processing of Okazaki fragments is limited to ∼20 nt and (iii) the size of Okazaki fragments is short (∼250 nt). While based on ColE1 plasmid replication, our findings are likely relevant to other pol I replicative processes such as chromosomal replication and DNA repair, which differ from ColE1 replication mostly at the recruitment steps. This mutation footprinting approach should help establish the role of other prokaryotic or eukaryotic polymerases in vivo, and provides a tool to investigate how sequence topology, DNA damage, or interactions with protein partners may affect the function of individual DNA polymerases.
DNA 聚合酶 I(pol I)在滞后链合成过程中处理 RNA 引物,并在 DNA 修复反应中填补小的缺口。然而,目前尚不清楚 pol I 和 pol III 在复制和修复过程中如何协同工作,以及 pol I 在体内对冈崎片段的加工程度如何。在这里,我们通过分析 ColE1 质粒易错复制产生的 pol I 突变来解决这些问题。这些数据是通过直接测序获得的,允许准确确定突变谱和分布。Pol I 的突变足迹表明:(i)在先导链复制过程中,pol I 至少在 1.3kb 以上被 pol III 逐渐取代;(ii)冈崎片段的 pol I 加工仅限于约 20nt;(iii)冈崎片段的大小较短(约 250nt)。虽然基于 ColE1 质粒复制,但我们的发现可能与其他 pol I 复制过程(如染色体复制和 DNA 修复)有关,这些过程与 ColE1 复制的主要区别在于募集步骤。这种突变足迹分析方法应该有助于确定其他原核或真核聚合酶在体内的作用,并提供一种工具来研究序列拓扑、DNA 损伤或与蛋白质伴侣的相互作用如何影响单个 DNA 聚合酶的功能。