Suppr超能文献

改进的时间聚类分析方法应用于针刺功能磁共振成像研究中的全脑数据。

Improved temporal clustering analysis method applied to whole-brain data in acupuncture fMRI study.

作者信息

Lu Na, Shan Bao-Ci, Xu Jian-Yang, Wang Wei, Li Kun-Cheng

机构信息

Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Magn Reson Imaging. 2007 Oct;25(8):1190-5. doi: 10.1016/j.mri.2007.02.010. Epub 2007 Apr 23.

Abstract

Temporal clustering analysis (TCA) has been proposed as a method for detecting the brain responses of a functional magnetic resonance imaging (fMRI) time series when the time and location of activation are completely unknown. But TCA is not suitable for treating the time series of the whole brain due to the existence of many inactive pixels. In theory, active pixels are located only in gray matter (GM). In this study, SPM2 was used to segment functional images into GM, white matter and cerebrospinal fluid, and only the pixels in GM were considered. Thus, most of inactive pixels are deleted, so that the sensitivity of TCA is greatly improved in the analysis of the whole brain. The same set of acupuncture fMRI data was treated using both conventional TCA and modified TCA (MTCA) for comparing their analytical ability. The results clearly show a significant improvement in the sensitivity achieved by MTCA.

摘要

时间聚类分析(TCA)已被提出作为一种在激活的时间和位置完全未知时检测功能磁共振成像(fMRI)时间序列大脑反应的方法。但由于存在许多非活动像素,TCA不适用于处理全脑的时间序列。理论上,活动像素仅位于灰质(GM)中。在本研究中,使用SPM2将功能图像分割为GM、白质和脑脊液,仅考虑GM中的像素。因此,大部分非活动像素被删除,从而在全脑分析中大大提高了TCA的灵敏度。使用传统TCA和改良TCA(MTCA)处理同一组针刺fMRI数据,以比较它们的分析能力。结果清楚地表明MTCA在灵敏度方面有显著提高。

相似文献

1
Improved temporal clustering analysis method applied to whole-brain data in acupuncture fMRI study.
Magn Reson Imaging. 2007 Oct;25(8):1190-5. doi: 10.1016/j.mri.2007.02.010. Epub 2007 Apr 23.
2
An improved temporal clustering analysis method applied to whole-brain data in fMRI study.
Magn Reson Imaging. 2007 Jan;25(1):57-62. doi: 10.1016/j.mri.2006.09.034. Epub 2006 Nov 28.
3
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
4
Model-independent method for fMRI analysis.
IEEE Trans Med Imaging. 2004 Mar;23(3):285-96. doi: 10.1109/TMI.2003.823064.
5
Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
IEEE Trans Med Imaging. 2007 Sep;26(9):1256-69. doi: 10.1109/TMI.2007.903226.
6
Brain functional localization: a survey of image registration techniques.
IEEE Trans Med Imaging. 2007 Apr;26(4):427-51. doi: 10.1109/TMI.2007.892508.
7
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
Neuroimage. 2010 Oct 1;52(4):1444-55. doi: 10.1016/j.neuroimage.2010.05.022. Epub 2010 Jun 1.
8
An integrated neighborhood correlation and hierarchical clustering approach of functional MRI.
IEEE Trans Biomed Eng. 2006 Mar;53(3):452-8. doi: 10.1109/TBME.2005.869660.
9
Hidden Markov multiple event sequence models: A paradigm for the spatio-temporal analysis of fMRI data.
Med Image Anal. 2007 Feb;11(1):1-20. doi: 10.1016/j.media.2006.09.003. Epub 2006 Nov 9.
10
Using replicator dynamics for analyzing fMRI data of the human brain.
IEEE Trans Med Imaging. 2002 May;21(5):485-92. doi: 10.1109/TMI.2002.1009384.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验