Lohmann Gabriele, Bohn Stefan
Max-Planck-Institute of Cognitive Neuroscience, Leipzig, Germany.
IEEE Trans Med Imaging. 2002 May;21(5):485-92. doi: 10.1109/TMI.2002.1009384.
The understanding of brain networks becomes increasingly the focus of current research. In the context of functional magnetic resonance imagery (fMRI) data of the human brain, networks have been mostly detected using standard clustering approaches. In this work, we present a new method of detecting functional networks using fMRI data. The novelty of this method is that these networks have the property that every network member is closely connected with every other member. This definition might to be better suited to model important aspects of brain activity than standard cluster definitions. The algorithm that we present here is based on a concept from theoretical biology called "replicator dynamics."
对脑网络的理解日益成为当前研究的焦点。在人类大脑功能磁共振成像(fMRI)数据的背景下,网络大多是使用标准聚类方法检测出来的。在这项工作中,我们提出了一种利用fMRI数据检测功能网络的新方法。该方法的新颖之处在于,这些网络具有每个网络成员都与其他每个成员紧密相连的特性。与标准聚类定义相比,这个定义可能更适合对大脑活动的重要方面进行建模。我们在此提出的算法基于理论生物学中的一个概念,即“复制动态”。