Suppr超能文献

无标度调控网络比随机网络允许更多的表达吗?

Do scale-free regulatory networks allow more expression than random ones?

作者信息

Fortuna Miguel A, Melián Carlos J

机构信息

Integrative Ecology Group, Estación Biológica de Doñana, CSIC, Avda. Ma Luisa s/n, 41013, E-41080 Sevilla, Spain.

出版信息

J Theor Biol. 2007 Jul 21;247(2):331-6. doi: 10.1016/j.jtbi.2007.03.017. Epub 2007 Mar 21.

Abstract

In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. This result might have implications for the number of expressed genes at steady state. Small genomes with scale-free regulatory topologies could allow much more expression than large genomes with exponential topologies. This may have implications for the dynamics, robustness and evolution of genomes.

摘要

在本文中,我们从Debian GNU/Linux操作系统中编译了具有调控相互作用(依赖和冲突)的软件包网络,并将其用作基因调控网络的类比。使用回溯算法,我们从具有无标度(真实数据)和指数(空模型)拓扑结构的软件包池中组装网络。我们记录了系统中可以功能安装的最大软件包数量(即活跃网络规模)。我们表明,无标度调控网络比随机网络允许更大的活跃网络规模。这一结果可能对稳态下表达基因的数量有影响。具有无标度调控拓扑结构的小基因组可能比具有指数拓扑结构的大基因组允许更多的表达。这可能对基因组的动力学、稳健性和进化有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验