Department of Physics, George Washington University, Washington, DC 20052, USA.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10478-83. doi: 10.1073/pnas.0914180107. Epub 2010 May 24.
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).
目前系统生物学的一个核心挑战是理解生物分子间的相互作用网络,特别是这些网络的组织原则。最近对已知网络的分析已经确定了普遍存在的小模体,这表明更大的网络可能通过组装这些较小模块的群组以电子电路的方式构建。我们使用一种独特的基于过程的方法来分析这些网络,结果表明在两个细胞周期网络中,每个网络都包含一个跨越所有网络节点的巨大主干模体,该模体提供主要的功能响应。主干实际上是能够提供所需功能的最小网络。此外,网络中的剩余边形成较小的模体,其作用是赋予稳定性属性,而不是提供功能。上述分析中使用的基于过程的方法具有其他优点:它是可扩展的、分析性的(导致可以描述行为的单个可分析表达式),并且计算效率高(可以识别和枚举生物过程的所有可能的最小网络)。