Slotkin Theodore A, Seidler Frederic J
Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
Brain Res Bull. 2007 May 30;72(4-6):232-74. doi: 10.1016/j.brainresbull.2007.01.005. Epub 2007 Jan 25.
Organophosphates affect mammalian brain development through a variety of mechanisms beyond their shared property of cholinesterase inhibition. We used microarrays to characterize similarities and differences in transcriptional responses to chlorpyrifos and diazinon, assessing defined gene groupings for the pathways known to be associated with the mechanisms and/or outcomes of chlorpyrifos-induced developmental neurotoxicity. We exposed neonatal rats to daily doses of chlorpyrifos (1mg/kg) or diazinon (1 or 2mg/kg) on postnatal days 1-4 and evaluated gene expression profiles in brainstem and forebrain on day 5; these doses produce little or no cholinesterase inhibition. We evaluated pathways for general neural cell development, cell signaling, cytotoxicity and neurotransmitter systems, and identified significant differences for >60% of 252 genes. Chlorpyrifos elicited major transcriptional changes in genes involved in neural cell growth, development of glia and myelin, transcriptional factors involved in neural cell differentiation, cAMP-related cell signaling, apoptosis, oxidative stress, excitotoxicity, and development of neurotransmitter synthesis, storage and receptors for acetylcholine, serotonin, norepinephrine and dopamine. Diazinon had similar effects on many of the same processes but also showed major differences from chlorpyrifos. Our results buttress the idea that different organophosphates target multiple pathways involved in neural cell development but also that they deviate in key aspects that may contribute to disparate neurodevelopmental outcomes. Equally important, these pathways are compromised at exposures that are unrelated to biologically significant cholinesterase inhibition and its associated signs of systemic toxicity. The approach used here demonstrates how planned comparisons with microarrays can be used to screen for developmental neurotoxicity.
有机磷酸酯通过胆碱酯酶抑制这一共同特性之外的多种机制影响哺乳动物的大脑发育。我们使用微阵列来表征对毒死蜱和二嗪农转录反应的异同,评估已知与毒死蜱诱导的发育性神经毒性机制和/或结果相关的途径的特定基因分组。我们在出生后第1至4天给新生大鼠每日剂量的毒死蜱(1mg/kg)或二嗪农(1或2mg/kg),并在第5天评估脑干和前脑的基因表达谱;这些剂量几乎不会或不会产生胆碱酯酶抑制作用。我们评估了一般神经细胞发育、细胞信号传导、细胞毒性和神经递质系统的途径,并确定了252个基因中>60%的显著差异。毒死蜱在参与神经细胞生长、胶质细胞和髓鞘发育、神经细胞分化相关转录因子、cAMP相关细胞信号传导、细胞凋亡、氧化应激、兴奋性毒性以及乙酰胆碱、5-羟色胺、去甲肾上腺素和多巴胺神经递质合成、储存和受体发育的基因中引起了主要的转录变化。二嗪农对许多相同过程有类似影响,但也与毒死蜱存在重大差异。我们的结果支持了这样一种观点,即不同的有机磷酸酯靶向参与神经细胞发育的多种途径,但它们在可能导致不同神经发育结果的关键方面也存在偏差。同样重要的是,这些途径在与生物学上显著的胆碱酯酶抑制及其相关的全身毒性迹象无关的暴露水平下就会受到损害。这里使用的方法展示了如何利用微阵列进行有计划的比较来筛查发育性神经毒性。