Suppr超能文献

基于单试次子空间的 VEP 提取方法。

Single-trial subspace-based approach for VEP extraction.

机构信息

Electrical and Electronics Engineering Department, PETRONAS University of Technology, 31750 Tronoh, Perak, Malaysia.

出版信息

IEEE Trans Biomed Eng. 2011 May;58(5):1383-93. doi: 10.1109/TBME.2010.2101073. Epub 2010 Dec 20.

Abstract

A signal subspace approach for extracting visual evoked potentials (VEPs) from the background electroencephalogram (EEG) colored noise without the need for a prewhitening stage is proposed. Linear estimation of the clean signal is performed by minimizing signal distortion while maintaining the residual noise energy below some given threshold. The generalized eigendecomposition of the covariance matrices of a VEP signal and brain background EEG noise is used to transform them jointly to diagonal matrices. The generalized subspace is then decomposed into signal subspace and noise subspace. Enhancement is performed by nulling the components in the noise subspace and retaining the components in the signal subspace. The performance of the proposed algorithm is tested with simulated and real data, and compared with the recently proposed signal subspace techniques. With the simulated data, the algorithms are used to estimate the latencies of P(100), P(200), and P(300) of VEP signals corrupted by additive colored noise at different values of SNR. With the real data, the VEP signals are collected at Selayang Hospital, Kuala Lumpur, Malaysia, and the capability of the proposed algorithm in detecting the latency of P(100) is obtained and compared with other subspace techniques. The ensemble averaging technique is used as a baseline for this comparison. The results indicated significant improvement by the proposed technique in terms of better accuracy and less failure rate.

摘要

提出了一种从背景脑电图(EEG)有色噪声中提取视觉诱发电位(VEPs)的信号子空间方法,无需预白化阶段。通过在保持残余噪声能量低于某个给定阈值的同时最小化信号失真来执行对清洁信号的线性估计。使用 VEP 信号和大脑背景 EEG 噪声的协方差矩阵的广义特征分解将它们共同变换到对角矩阵。然后将广义子空间分解为信号子空间和噪声子空间。通过在噪声子空间中置零分量并保留信号子空间中的分量来进行增强。使用模拟和真实数据测试了所提出算法的性能,并与最近提出的信号子空间技术进行了比较。使用模拟数据,该算法用于估计在不同 SNR 值下添加有色噪声后的 VEP 信号的 P(100)、P(200)和 P(300)的潜伏期。使用真实数据,在马来西亚吉隆坡的 Selayang 医院收集 VEP 信号,并获得所提出算法检测 P(100)潜伏期的能力,并与其他子空间技术进行比较。集合平均技术用作此比较的基准。结果表明,所提出的技术在准确性和失败率方面都有显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验