Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.
Faculty of Medicine, University of Zürich, Zürich, Switzerland.
Sci Rep. 2021 Mar 9;11(1):5506. doi: 10.1038/s41598-021-85168-8.
We sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.
我们旨在通过评估其在区分脑转移瘤和高级别与低级别胶质脑肿瘤中的价值,来评估放射组学在酰胺质子转移加权(APTw)成像中的应用。我们回顾性地确定了 48 例未经治疗的患者(10 例 WHO 2 级,1 例 WHO 3 级,10 例 WHO 4 级原发性胶质脑肿瘤和 27 例转移瘤),这些患者均进行了 APTw MR 成像,要么患有原发性胶质脑肿瘤,要么患有转移瘤。在进行了放射组学特征提取和后处理的图像分析后,采用分层十折交叉验证的机器学习算法(多层感知机机器学习算法;随机森林分类器)对特征进行训练,并用于区分脑肿瘤。多层感知机在区分原发性胶质脑肿瘤和转移瘤方面的 AUC 为 0.836(接受者操作特征曲线)。随机森林分类器在区分 4 级 WHO 与 2/3 级原发性胶质脑肿瘤方面的 AUC 为 0.868。对于区分 4 级肿瘤和 2/3 级肿瘤与转移瘤,平均 AUC 为 0.797。我们的研究结果表明,放射组学在 APTw 成像中的应用是可行的,并且可以高度准确地区分原发性胶质脑肿瘤和转移瘤。