Suppr超能文献

液相色谱-质谱数据集的计算处理工具:用户视角

Tools for computational processing of LC-MS datasets: a user's perspective.

作者信息

Codrea Marius C, Jiménez Connie R, Heringa Jaap, Marchiori Elena

机构信息

Centre for Integrative Bioinformatics VU, Department of Computer Science, Free University De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

出版信息

Comput Methods Programs Biomed. 2007 Jun;86(3):281-90. doi: 10.1016/j.cmpb.2007.03.001. Epub 2007 Apr 24.

Abstract

Liquid chromatography-mass spectrometry (LC-MS) profiling of clinical samples for quantifying absolute ion abundances of peptides and proteins has emerged as a promising approach. Quantitation of changes in protein abundance of large number of samples is challenging and requires automatic processing means. The development of data analysis software is laborious and time-consuming. Fortunately, freely available tools have been recently introduced, which incorporate algorithms for visualization and data processing and allow the user to embed external routines for data analysis. A relevant issue related to the design and evaluation of such tools concerns usability. Properties such as easy access, large datasets management, modularity, integration with other tools, etc, are important for performing large-scale integrative data analysis with methods and visual techniques from different (possibly integrated) tools. In this paper, we consider four freely available tools recently introduced in top international journals in order to identify a list of such usability descriptors. We propose 10 descriptors that can be used both as guidelines when developing new tools and as parameters for assessing usability of existing tools. The considered tools show satisfactory usability properties, and the most recent tools exhibit improved flexibility, indicating a trend towards the design of tools that give the user a more central role in the selection, use and integration of methods and tools.

摘要

液相色谱-质谱联用(LC-MS)分析临床样本以定量肽和蛋白质的绝对离子丰度已成为一种很有前景的方法。对大量样本的蛋白质丰度变化进行定量分析具有挑战性,需要自动化处理手段。开发数据分析软件既费力又耗时。幸运的是,最近引入了一些免费工具,这些工具集成了可视化和数据处理算法,并允许用户嵌入外部数据分析程序。与这类工具的设计和评估相关的一个重要问题是可用性。诸如易于访问、大型数据集管理、模块化、与其他工具集成等特性,对于使用来自不同(可能是集成的)工具的方法和可视化技术进行大规模综合数据分析很重要。在本文中,我们考虑了最近在国际顶级期刊上介绍的四个免费工具,以便确定这样一份可用性描述符列表。我们提出了10个描述符,它们既可以在开发新工具时用作指导方针,也可以作为评估现有工具可用性的参数。所考虑的工具显示出令人满意的可用性特性,并且最新的工具表现出更高的灵活性,这表明工具设计呈现出一种趋势,即让用户在方法和工具的选择、使用及集成中发挥更核心的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验