Suppr超能文献

疫苗诱导的病原体菌株替代:机制是什么?

Vaccine-induced pathogen strain replacement: what are the mechanisms?

作者信息

Martcheva Maia, Bolker Benjamin M, Holt Robert D

机构信息

Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA.

出版信息

J R Soc Interface. 2008 Jan 6;5(18):3-13. doi: 10.1098/rsif.2007.0236.

Abstract

Host immune systems impose natural selection on pathogen populations, which respond by evolving different antigenic signatures. Like many evolutionary processes, pathogen evolution reflects an interaction between different levels of selection; pathogens can win in between-strain competition by taking over individual hosts (within-host level) or by infecting more hosts (population level). Vaccination, which intensifies and modifies selection by protecting hosts against one or more pathogen strains, can drive the emergence of new dominant pathogen strains-a phenomenon called vaccine-induced pathogen strain replacement. Here, we review reports of increased incidence of subdominant variants after vaccination campaigns and extend the current model for pathogen strain replacement, which assumes that pathogen strain replacement occurs only through the differential effectiveness of vaccines against different pathogen strains. Based on a recent theoretical study, we suggest a broader range of possible mechanisms, some of which allow pathogen strain replacement even when vaccines are perfect-that is, they protect all vaccinated individuals completely against all pathogen strains. We draw an analogy with ecological and evolutionary explanations for competitive dominance and coexistence that allow for tradeoffs between different competitive and life-history traits.

摘要

宿主免疫系统对病原体群体施加自然选择,病原体则通过进化出不同的抗原特征做出反应。与许多进化过程一样,病原体进化反映了不同选择水平之间的相互作用;病原体可以通过占据单个宿主(宿主内水平)或感染更多宿主(群体水平)在菌株间竞争中获胜。疫苗接种通过保护宿主抵御一种或多种病原体菌株来强化和改变选择,这可能会促使新的优势病原体菌株出现——这种现象称为疫苗诱导的病原体菌株替代。在此,我们回顾了疫苗接种运动后亚优势变体发病率增加的报告,并扩展了当前病原体菌株替代模型,该模型假设病原体菌株替代仅通过疫苗对不同病原体菌株的不同效力发生。基于最近的一项理论研究,我们提出了更广泛的可能机制,其中一些机制即使在疫苗完美的情况下也能导致病原体菌株替代——也就是说,它们能完全保护所有接种疫苗的个体抵御所有病原体菌株。我们将其与竞争优势和共存的生态及进化解释进行类比,这些解释允许在不同的竞争和生活史特征之间进行权衡。

相似文献

1
Vaccine-induced pathogen strain replacement: what are the mechanisms?
J R Soc Interface. 2008 Jan 6;5(18):3-13. doi: 10.1098/rsif.2007.0236.
2
Vaccines and adjuvants--special issue.
J Med Microbiol. 2012 Jul;61(Pt 7):887-888. doi: 10.1099/jmm.0.046177-0. Epub 2012 Apr 26.
3
Eating the enemy within: autophagy in infectious diseases.
Cell Death Differ. 2009 Jan;16(1):57-69. doi: 10.1038/cdd.2008.130. Epub 2008 Sep 5.
4
Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines.
J Nanobiotechnology. 2017 Nov 17;15(1):83. doi: 10.1186/s12951-017-0319-9.
5
Proteomics for development of vaccine.
J Proteomics. 2011 Nov 18;74(12):2596-616. doi: 10.1016/j.jprot.2011.01.019. Epub 2011 Feb 20.
6
Host-pathogen interaction during bacterial vaccination.
Curr Opin Immunol. 2015 Oct;36:1-7. doi: 10.1016/j.coi.2015.04.002. Epub 2015 May 16.
8
Platelets and pathogens.
Cell Mol Life Sci. 2010 Feb;67(4):495-8. doi: 10.1007/s00018-009-0204-2. Epub 2009 Nov 21.
9
The evolutionary epidemiology of vaccination.
J R Soc Interface. 2007 Oct 22;4(16):803-17. doi: 10.1098/rsif.2006.0207.
10
The role of platelets in defence against pathogens.
Hamostaseologie. 2011 Nov;31(4):264-8. doi: 10.5482/ha-1152. Epub 2011 Jun 28.

引用本文的文献

2
Vaccine-induced strain replacement: theory and real-life implications.
Future Microbiol. 2024;19(11):1017-1026. doi: 10.1080/17460913.2024.2345003. Epub 2024 Jun 24.
3
4
Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in .
Microorganisms. 2023 Dec 18;11(12):3005. doi: 10.3390/microorganisms11123005.
5
A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US.
J Theor Biol. 2023 May 21;565:111468. doi: 10.1016/j.jtbi.2023.111468. Epub 2023 Mar 20.
6
A mathematical model for the co-dynamics of COVID-19 and tuberculosis.
Math Comput Simul. 2023 May;207:499-520. doi: 10.1016/j.matcom.2023.01.014. Epub 2023 Jan 19.
7
Effect of difference between EV-A71 virus epidemic strain and "vaccine strain" on neutralizing antibody titer.
Hum Vaccin Immunother. 2022 Nov 30;18(6):2121565. doi: 10.1080/21645515.2022.2121565. Epub 2022 Sep 16.
8
Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection.
Physica A. 2022 Dec 1;607:128173. doi: 10.1016/j.physa.2022.128173. Epub 2022 Sep 9.
9
Genotype Distribution Change After Human Papillomavirus Vaccination in Two Autonomous Communities in Spain.
Front Cell Infect Microbiol. 2021 Sep 22;11:633162. doi: 10.3389/fcimb.2021.633162. eCollection 2021.

本文引用的文献

4
In vitro and in vivo fitness of respiratory syncytial virus monoclonal antibody escape mutants.
J Virol. 2006 Dec;80(23):11651-7. doi: 10.1128/JVI.01387-06. Epub 2006 Sep 27.
7
Vaccine strategies of meningococcal disease: results of a 10-year population-based study.
Eur J Pediatr. 2005 Dec;164(12):735-40. doi: 10.1007/s00431-005-1719-7. Epub 2005 Aug 27.
8
HIV drug resistance acquired through superinfection.
AIDS. 2005 Aug 12;19(12):1251-6. doi: 10.1097/01.aids.0000180095.12276.ac.
10
Predicting the potential public health impact of disease-modifying HIV vaccines in South Africa: the problem of subtypes.
Curr Drug Targets Infect Disord. 2005 Jun;5(2):179-92. doi: 10.2174/1568005054201616.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验