Suppr超能文献

一种关于新冠病毒与结核病共同动态变化的数学模型。

A mathematical model for the co-dynamics of COVID-19 and tuberculosis.

作者信息

Ojo Mayowa M, Peter Olumuyiwa James, Goufo Emile Franc Doungmo, Nisar Kottakkaran Sooppy

机构信息

Department of Mathematical Sciences, University of South Africa, Florida, South Africa.

Thermo Fisher Scientific, Microbiology Division, Lenexa, KS, USA.

出版信息

Math Comput Simul. 2023 May;207:499-520. doi: 10.1016/j.matcom.2023.01.014. Epub 2023 Jan 19.

Abstract

In this study, we formulated and analyzed a deterministic mathematical model for the co-infection of COVID-19 and tuberculosis, to study the co-dynamics and impact of each disease in a given population. Using each disease's corresponding reproduction number, the existence and stability of the disease-free equilibrium were established. When the respective threshold quantities , and are below unity, the COVID-19 and TB-free equilibrium are said to be locally asymptotically stable. The impact of vaccine (i.e., efficacy and vaccinated proportion) and the condition required for COVID-19 eradication was examined. Furthermore, the presence of the endemic equilibria of the sub-models is analyzed and the criteria for the phenomenon of backward bifurcation of the COVID-19 sub-model are presented. To better understand how each disease condition impacts the dynamics behavior of the other, we investigate the invasion criterion of each disease by computing the threshold quantity known as the invasion reproduction number. We perform a numerical simulation to investigate the impact of threshold quantities with respect to their invasion reproduction number, co-infection transmission rate , and each disease transmission rate on disease dynamics. The outcomes established the necessity for the coexistence or elimination of both diseases from the communities. Overall, our findings imply that while COVID-19 incidence decreases with co-infection prevalence, the burden of tuberculosis on the human population increases.

摘要

在本研究中,我们构建并分析了一个关于新冠病毒(COVID-19)与结核病合并感染的确定性数学模型,以研究在特定人群中这两种疾病的共同动态及各自的影响。利用每种疾病对应的再生数,建立了无病平衡点的存在性和稳定性。当各自的阈值量 、 和 低于1时,无新冠病毒和无结核病的平衡点被认为是局部渐近稳定的。研究了疫苗的影响(即效力和接种比例)以及根除新冠病毒所需的条件。此外,分析了子模型中地方病平衡点的存在情况,并给出了新冠病毒子模型的后向分岔现象的标准。为了更好地理解每种疾病状况如何影响另一种疾病的动态行为,我们通过计算称为入侵再生数的阈值量来研究每种疾病的入侵标准。我们进行了数值模拟,以研究阈值量 相对于其入侵再生数、合并感染传播率 以及每种疾病传播率 对疾病动态的影响。结果确定了这两种疾病在社区中共存或消除的必要性。总体而言,我们的研究结果表明,虽然新冠病毒发病率随合并感染流行率的降低而下降,但结核病在人群中的负担却增加了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bad2/9850643/77c1a6b58be3/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验