Suppr超能文献

开启神经肌肉电刺激诱发收缩的中枢性贡献。

Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation.

作者信息

Dean J C, Yates L M, Collins D F

机构信息

Faculty of Physical Education and Recreation, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada.

出版信息

J Appl Physiol (1985). 2007 Jul;103(1):170-6. doi: 10.1152/japplphysiol.01361.2006. Epub 2007 Apr 26.

Abstract

Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies < or = 20 Hz, and it was maximal at frequencies > or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.

摘要

神经肌肉电刺激可通过外周和中枢机制产生收缩。直接激活运动轴突(外周机制)会以不自然的顺序募集运动单位,易疲劳的肌纤维常在收缩早期就被激活。感觉轴突的激活可通过中枢机制产生收缩,为脊髓神经元提供兴奋性突触输入,从而按自然顺序募集运动单位。目前,我们量化了刺激频率(10 - 100赫兹)、持续时间(0.25 - 2秒的高频脉冲串,或20秒的恒频刺激)以及强度[由短暂的100赫兹脉冲串产生的1 - 5%最大自主收缩(MVC)扭矩]对中枢产生的扭矩的影响。对8名受试者的小腿三头肌施加电刺激(1毫秒脉冲),并记录跖屈扭矩。刺激频率、持续时间和强度均影响中枢对扭矩的贡献大小。在频率≤20赫兹时,中枢扭矩未产生,在频率≥80赫兹时达到最大。增加高频刺激的持续时间会增加中枢对扭矩的贡献,因为中枢扭矩在11秒内逐渐产生。中枢扭矩在相对较低的收缩强度时最大。最大量的中枢扭矩由20秒、100赫兹的脉冲串(10.7±5.5%MVC)以及80或100赫兹的2秒重复脉冲串(分别为9.2±4.8%和10.2±8.1%MVC)产生。因此,通过施加高频、长时间刺激并在相对较低强度下刺激以避免逆向阻断,可使中枢扭矩最大化。如果如假设的那样,中枢机制主要激活抗疲劳肌纤维,那么通过该途径产生肌肉收缩可能会改善康复应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验