Chen James J
US FDA, Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Jefferson, AR 72079, USA.
Pharmacogenomics. 2007 May;8(5):473-82. doi: 10.2217/14622416.8.5.473.
One major challenge with the use of microarray technology is the analysis of massive amounts of gene-expression data for various applications. This review addresses the key aspects of the microarray gene-expression data analysis for the two most common objectives: class comparison and class prediction. Class comparison mainly aims to select which genes are differentially expressed across experimental conditions. Gene selection is separated into two steps: gene ranking and assigning a significance level. Class prediction uses expression profiling analysis to develop a prediction model for patient selection, diagnostic prediction or prognostic classification. Development of a prediction model involves two components: model building and performance assessment. It also describes two additional data analysis methods: gene-class testing and multiple ordering criteria.
使用微阵列技术的一个主要挑战是针对各种应用分析大量基因表达数据。本综述阐述了微阵列基因表达数据分析的关键方面,以实现两个最常见的目标:类别比较和类别预测。类别比较主要旨在选择哪些基因在不同实验条件下差异表达。基因选择分为两个步骤:基因排序和赋予显著性水平。类别预测使用表达谱分析来开发用于患者选择、诊断预测或预后分类的预测模型。预测模型的开发涉及两个部分:模型构建和性能评估。它还描述了另外两种数据分析方法:基因-类别测试和多重排序标准。