Suppr超能文献

我们是否已经建立了脊椎动物光感受器细胞命运特化的统一模型?

Have we achieved a unified model of photoreceptor cell fate specification in vertebrates?

作者信息

Adler Ruben, Raymond Pamela A

机构信息

Wilmer Institute, Johns Hopkins University, School of Medicine, 519 Maumenee, 600 N Wolfe, Baltimore, MD 21287-9257, USA.

出版信息

Brain Res. 2008 Feb 4;1192:134-50. doi: 10.1016/j.brainres.2007.03.044. Epub 2007 Mar 20.

Abstract

How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina.

摘要

视网膜祖细胞如何选择分化为视杆细胞或视锥细胞?如果它成为视锥细胞,又是其不同亚型中的哪一种呢?在包括人类和非人类灵长类动物、啮齿动物(小鼠和大鼠)、鸡、青蛙(非洲爪蟾)和鱼类在内的多种动物模型系统中,光感受器细胞命运决定和分化的机制已得到广泛研究。现在讨论是否有可能将所得信息整合为一个适用于所有脊椎动物的统一模型似乎恰逢其时。在这篇综述中,我们聚焦于几种广泛使用的实验动物模型系统,以突出不同物种光感受器特性的差异、脊椎动物用于创建具有适应其物种视觉需求的光感受器的视网膜的发育策略和解决方案的多样性,以及目前用于研究光感受器细胞命运决定的方法的局限性。基于这些考虑,我们得出结论,我们尚未准备好构建发育中的脊椎动物视网膜光感受器细胞命运决定的统一模型。

相似文献

1
Have we achieved a unified model of photoreceptor cell fate specification in vertebrates?
Brain Res. 2008 Feb 4;1192:134-50. doi: 10.1016/j.brainres.2007.03.044. Epub 2007 Mar 20.
2
Molecular mechanisms of vertebrate retina development: implications for ganglion cell and photoreceptor patterning.
Brain Res. 2008 Feb 4;1192:151-64. doi: 10.1016/j.brainres.2007.04.079. Epub 2007 May 10.
3
Photoreceptor cell fate specification in vertebrates.
Development. 2015 Oct 1;142(19):3263-73. doi: 10.1242/dev.127043.
4
Regulation of photoreceptor gene expression by Crx-associated transcription factor network.
Brain Res. 2008 Feb 4;1192:114-33. doi: 10.1016/j.brainres.2007.06.036. Epub 2007 Jun 30.
5
Proliferative and cell fate effects of Hedgehog signaling in the vertebrate retina.
Brain Res. 2008 Feb 4;1192:61-75. doi: 10.1016/j.brainres.2007.06.018. Epub 2007 Jun 16.
6
Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina.
PLoS One. 2015 Jun 19;10(6):e0131054. doi: 10.1371/journal.pone.0131054. eCollection 2015.
7
Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.
Nat Neurosci. 2003 Dec;6(12):1255-63. doi: 10.1038/nn1155. Epub 2003 Nov 16.
8
Induction of Rod and Cone Photoreceptor-Specific Progenitors from Stem Cells.
Adv Exp Med Biol. 2019;1185:551-555. doi: 10.1007/978-3-030-27378-1_90.
9
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6352-7. doi: 10.1073/pnas.1000854107. Epub 2010 Mar 22.
10
Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells.
Stem Cell Res. 2018 Dec;33:215-227. doi: 10.1016/j.scr.2018.11.005. Epub 2018 Nov 13.

引用本文的文献

2
Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration.
PLoS Genet. 2022 Mar 4;18(3):e1009841. doi: 10.1371/journal.pgen.1009841. eCollection 2022 Mar.
4
Transcripts within rod photoreceptors of the Zebrafish retina.
BMC Genomics. 2018 Feb 8;19(1):127. doi: 10.1186/s12864-018-4499-y.
6
Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish.
PLoS Genet. 2016 Apr 8;12(4):e1005968. doi: 10.1371/journal.pgen.1005968. eCollection 2016 Apr.
7
Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish.
Proc Biol Sci. 2015 Aug 7;282(1812):20150659. doi: 10.1098/rspb.2015.0659.
9
Early divergence of central and peripheral neural retina precursors during vertebrate eye development.
Dev Dyn. 2015 Mar;244(3):266-76. doi: 10.1002/dvdy.24218. Epub 2014 Nov 17.

本文引用的文献

1
The teleost retina as a model for developmental and regeneration biology.
Zebrafish. 2004;1(3):257-71. doi: 10.1089/zeb.2004.1.257.
2
The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain.
Gene Expr Patterns. 2007 Feb;7(4):521-8. doi: 10.1016/j.modgep.2006.10.006. Epub 2006 Oct 21.
6
Molecular characterization of retinal stem cells and their niches in adult zebrafish.
BMC Dev Biol. 2006 Jul 26;6:36. doi: 10.1186/1471-213X-6-36.
8
Remodeling of the cone photoreceptor mosaic during metamorphosis of flounder (Pseudopleuronectes americanus).
Brain Behav Evol. 2006;68(4):241-54. doi: 10.1159/000094705. Epub 2006 Jul 20.
9
Evolution of vertebrate visual pigments.
Curr Biol. 2006 Jul 11;16(13):R484-9. doi: 10.1016/j.cub.2006.06.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验