Griffith C M, Sanders E J
Department of Physiology, University of Alberta, Edmonton, Canada.
Anat Rec. 1991 Oct;231(2):238-50. doi: 10.1002/ar.1092310212.
A selection of lectins was used to investigate developmentally regulated changes in the distribution of cell surface oligosaccharides during the gastrulation and neurulation stages of early chick embryo development. Lectins from three specificity classes were used: glucose/mannose specificity (concanavalin A [Con A], Lens culinaris agglutinin [LCA], Pisum sativum agglutinin [PSA]); N-acetylglucosamine specificity (Lycopersicon esculentum agglutinin [LEA], wheat germ agglutinin [WGA], succinylated WGA [sWGA]); N-acetylgalactosamine/galactose specificity (Dolichos biflorus agglutinin [DBA], soybean agglutinin [SBA], Sophora japonica agglutinin [SJA], Bandeiraea (Griffonia) simplicifolia lectin I [BSL I], peanut agglutinin [PNA], Artocarpus integrifolia lectin [Jacalin], Ricinus communis agglutinin-1 [RCA-1], Erythrina cristagalli lectin [ECL]). At gastrulation stages, patterns of lectin binding could be distinguished in the epiblast, mesoderm, and endoderm cell layers. The primitive streak failed to bind any of the lectins, but LEA and WGA bound to the epiblast in regions lateral to the streak, indicating the loss of some glucosamine residues medially in preparation for the ingression movements of gastrulation. Several lectins showed marked binding to the mesoderm cells after their passage through the primitive streak; these were LCA, PSA, WGA, sWGA, BSL, and most particularly PNA. Therefore, the epithelial-mesenchymal transformation from epiblast to mesoderm at the primitive streak is accompanied by cell surface oligosaccharide changes in the epiblast and mesoderm that involve all classes of lectins including the PNA-binding sequence Gal beta 1-3GalNAc. Ultrastructurally, PNA was shown to bind extracellularly to matrix fibrils. Jacalin, having the same sugar specificity as PNA, but binding to serine/threonine linked chains rather than asparagine linked chains showed no binding to the mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)
选用了一系列凝集素来研究早期鸡胚发育的原肠胚形成和神经胚形成阶段细胞表面寡糖分布的发育调控变化。使用了来自三种特异性类别的凝集素:葡萄糖/甘露糖特异性(伴刀豆球蛋白A [Con A]、扁豆凝集素[LCA]、豌豆凝集素[PSA]);N-乙酰葡糖胺特异性(番茄凝集素[LEA]、麦胚凝集素[WGA]、琥珀酰化WGA [sWGA]);N-乙酰半乳糖胺/半乳糖特异性(双花扁豆凝集素[DBA]、大豆凝集素[SBA]、槐凝集素[SJA]、单叶豆凝集素I [BSL I]、花生凝集素[PNA]、面包果凝集素[Jacalin]、蓖麻凝集素-1 [RCA-1]、刺桐凝集素[ECL])。在原肠胚形成阶段,可在胚盘上层、中胚层和内胚层细胞层中区分凝集素结合模式。原条不与任何凝集素结合,但LEA和WGA与原条外侧区域的胚盘上层结合,表明内侧一些葡糖胺残基的丢失,为原肠胚形成的内陷运动做准备。几种凝集素在中胚层细胞穿过原条后显示出与中胚层细胞的显著结合;这些凝集素是LCA、PSA、WGA、sWGA、BSL,尤其是PNA。因此,在原条处从胚盘上层到中胚层的上皮-间充质转化伴随着胚盘上层和中胚层细胞表面寡糖的变化,涉及所有类别的凝集素,包括与PNA结合的序列Galβ1-3GalNAc。超微结构显示,PNA在细胞外与基质纤维结合。与PNA具有相同糖特异性但与丝氨酸/苏氨酸连接链而非天冬酰胺连接链结合的Jacalin未显示与中胚层结合。(摘要截短于250字)