Yadav Sharada Prasad, Ahmad Aqeel, Ghosh Jimut Kanti
Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow-226001, India.
Biochim Biophys Acta. 2007 Jun;1768(6):1574-82. doi: 10.1016/j.bbamem.2007.03.019. Epub 2007 Mar 28.
To find out the sequence requirement of the H-205 peptide, containing an amphipathic leucine zipper motif corresponding to the amino acid (a.a.) region 205-234 of hemolysin E (HlyE) to induce efficient permeation in zwitterionic lipid vesicles, the peptide was extended at the N-terminal after the addition of seven amino acids from the predicted transmembrane region in the head domain of the protein-toxin. The new peptide, H-198 (a.a. 198-234) and a scrambled mutant peptide of the same size were synthesized, fluorescently labeled and characterized functionally and structurally. The results showed that H-198 induced significantly higher permeation in the zwitterionic PC/Chol lipid vesicles than its shorter version, H-205. H-198 formed large aggregates in the PC/Chol vesicles unlike H-205 and also adopted more helical structure in the membrane mimetic environments compared to that of H-205. Fluorescence energy transfer experiments by flow cytometry indicated that only H-198 but not its mutant or H-205 oligomerized in the zwitterionic lipid vesicles, while in the negatively charged lipid vesicles both H-198 and H-205 formed oligomeric assembly. The results suggest a probable role of the hydrophobic residues of the head domain of HlyE in inducing permeability in the zwitterionic lipid vesicles by the peptide derived from the a.a. 198-234 of the toxin.