Thwaites David T, Anderson Catriona M H
Epithelial Research Group, Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
Exp Physiol. 2007 Jul;92(4):603-19. doi: 10.1113/expphysiol.2005.029959. Epub 2007 Apr 27.
The H(+)-electrochemical gradient was originally considered as a driving force for solute transport only across cellular membranes of bacteria, plants and yeast. However, in the mammalian small intestine, a H(+)-electrochemical gradient is present at the epithelial brush-border membrane in the form of an acid microclimate. Over recent years, a large number of H(+)-coupled cotransport mechanisms have been identified at the luminal membrane of the mammalian small intestine. These transporters are responsible for the initial stage in absorption of a remarkable variety of essential and non-essential nutrients and micronutrients, including protein digestion products (di/tripeptides and amino acids), vitamins, short-chain fatty acids and divalent metal ions. Proton-coupled cotransporters expressed at the mammalian small intestinal brush-border membrane include: the di/tripeptide transporter PepT1 (SLC15A1); the proton-coupled amino-acid transporter PAT1 (SLC36A1); the divalent metal transporter DMT1 (SLC11A2); the organic anion transporting polypeptide OATP2B1 (SLC02B1); the monocarboxylate transporter MCT1 (SLC16A1); the proton-coupled folate transporter PCFT (SLC46A1); the sodium-glucose linked cotransporter SGLT1 (SLC5A1); and the excitatory amino acid carrier EAAC1 (SLC1A1). Emerging research demonstrates that the optimal intestinal absorptive capacity of certain H(+)-coupled cotransporters (PepT1 and PAT1) is dependent upon function of the brush-border Na(+)-H(+) exchanger NHE3 (SLC9A3). The high oral bioavailability of a large number of pharmaceutical compounds results, in part, from absorptive transport via the same H(+)-coupled cotransporters. Drugs undergoing H(+)-coupled cotransport across the intestinal brush-border membrane include those used to treat bacterial infections, hypercholesterolaemia, hypertension, hyperglycaemia, viral infections, allergies, epilepsy, schizophrenia, rheumatoid arthritis and cancer.
H⁺电化学梯度最初仅被认为是驱动溶质跨细菌、植物和酵母细胞膜运输的动力。然而,在哺乳动物小肠中,上皮刷状缘膜存在以酸性微环境形式存在的H⁺电化学梯度。近年来,在哺乳动物小肠的腔膜上已鉴定出大量H⁺偶联共转运机制。这些转运体负责吸收多种必需和非必需营养素及微量营养素的初始阶段,包括蛋白质消化产物(二肽/三肽和氨基酸)、维生素、短链脂肪酸和二价金属离子。在哺乳动物小肠刷状缘膜上表达的质子偶联共转运体包括:二肽/三肽转运体PepT1(SLC15A1);质子偶联氨基酸转运体PAT1(SLC36A1);二价金属转运体DMT1(SLC11A2);有机阴离子转运多肽OATP2B1(SLC02B1);单羧酸转运体MCT1(SLC16A1);质子偶联叶酸转运体PCFT(SLC46A1);钠-葡萄糖共转运体SGLT1(SLC5A1);以及兴奋性氨基酸载体EAAC1(SLC1A1)。新出现的研究表明,某些H⁺偶联共转运体(PepT1和PAT1)的最佳肠道吸收能力取决于刷状缘钠-氢交换体NHE3(SLC9A3)的功能。大量药物化合物的高口服生物利用度部分源于通过相同的H⁺偶联共转运体的吸收转运。通过H⁺偶联共转运穿过肠道刷状缘膜的药物包括用于治疗细菌感染、高胆固醇血症、高血压、高血糖症、病毒感染、过敏、癫痫、精神分裂症、类风湿性关节炎和癌症的药物。