de Jong G Theodoor, Bickelhaupt F Matthias
Afdeling Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Chemphyschem. 2007 Jun 4;8(8):1170-81. doi: 10.1002/cphc.200700092.
We investigate palladium-induced activation of the C-H, C-C, C-F, and C-Cl bonds in methane, ethane, cyclopropane, fluoromethane, and chloromethane, using relativistic density functional theory (DFT) at ZORA-BLYP/TZ2P. Our purpose is to arrive at a qualitative understanding, based on accurate calculations, of the trends in activation barriers and transition state (TS) geometries (e.g. early or late along the reaction coordinate) in terms of the reactants' properties. To this end, we extend the activation strain model (in which the activation energy Delta E(not equal) is decomposed into the activation strain Delta E(not equal)(strain) of the reactants and the stabilizing TS interaction Delta E(not equal)(int) between the reactants) from a single-point analysis of the TS to an analysis along the reaction coordinate zeta, that is, Delta E(zeta)=Delta E(strain)(zeta)+Delta E(int)(zeta). This extension enables us to understand qualitatively, trends in the position of the TS along zeta and, therefore, the values of the activation strain Delta E(not equal)(strain)=Delta E(strain)(zeta(TS)) and TS interaction Delta E(not equal)(int)=Delta E(int)(zeta(TS)) and trends therein. An interesting insight that emerges is that the much higher barrier of metal-mediated C-C versus C-H activation originates from steric shielding of the C-C bond in ethane by C-H bonds. Thus, before a favorable stabilizing interaction with the C-C bond can occur, the C-H bonds must be bent away, which causes the metal-substrate interaction Delta E(int)(zeta) in C-C activation to lag behind. Such steric shielding is not present in the metal-mediated activation of the C-H bond, which is always accessible from the hydrogen side. Other phenomena that are addressed are anion assistance, competition between direct oxidative insertion (OxIn) versus the alternative S(N)2 pathway, and the effect of ring strain.
我们使用相对论密度泛函理论(DFT)在ZORA - BLYP/TZ2P水平上研究钯诱导的甲烷、乙烷、环丙烷、氟甲烷和氯甲烷中C - H、C - C、C - F和C - Cl键的活化。我们的目的是基于精确计算,从反应物的性质出发,定性地理解活化能垒和过渡态(TS)几何结构(例如沿反应坐标是早还是晚)的趋势。为此,我们将活化应变模型(其中活化能ΔE(≠)分解为反应物的活化应变ΔE(≠)(应变)和反应物之间稳定的TS相互作用ΔE(≠)(int))从TS的单点分析扩展到沿反应坐标ζ的分析,即ΔE(ζ)=ΔE(应变)(ζ)+ΔE(int)(ζ)。这种扩展使我们能够定性地理解TS沿ζ的位置趋势,进而理解活化应变ΔE(≠)(应变)=ΔE(应变)(ζ(TS))和TS相互作用ΔE(≠)(int)=ΔE(int)(ζ(TS))的趋势及其变化趋势。一个有趣的见解是,金属介导的C - C活化比C - H活化的能垒高得多,这源于乙烷中C - C键被C - H键的空间屏蔽。因此,在与C - C键发生有利的稳定相互作用之前,C - H键必须弯曲离开