Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain.
Chemistry. 2009 Dec 7;15(47):13022-32. doi: 10.1002/chem.200902024.
Double group transfer (DGT) reactions, such as the bimolecular automerization of ethane plus ethene, are known to have high reaction barriers despite the fact that their cyclic transition states have a pronounced in-plane aromatic character, as indicated by NMR spectroscopic parameters. To arrive at a way of understanding this somewhat paradoxical and incompletely understood phenomenon of high-energy aromatic transition states, we have explored six archetypal DGT reactions using density functional theory (DFT) at the OLYP/TZ2P level. The main trends in reactivity are rationalized using the activation strain model of chemical reactivity. In this model, the shape of the reaction profile DeltaE(zeta) and the height of the overall reaction barrier DeltaE( not equal)=DeltaE(zeta=zeta(TS)) is interpreted in terms of the strain energy DeltaE(strain)(zeta) associated with deforming the reactants along the reaction coordinate zeta plus the interaction energy DeltaE(int)(zeta) between these deformed reactants: DeltaE(zeta)=DeltaE(strain)(zeta)+DeltaE(int)(zeta). We also use an alternative fragmentation and a valence bond model for analyzing the character of the transition states.
双组转移(DGT)反应,如乙烷与乙烯的双分子自分子化反应,尽管其环状过渡态具有明显的面内芳香特征,如 NMR 光谱参数所示,但反应势垒却很高。为了理解这种有些矛盾且尚未完全理解的高能芳香过渡态现象,我们使用密度泛函理论(DFT)在 OLYP/TZ2P 水平上研究了六个典型的 DGT 反应。使用化学反应活性的活化应变模型来合理化反应性的主要趋势。在该模型中,反应轮廓 DeltaE(zeta)的形状和整个反应势垒 DeltaE( not equal)=DeltaE(zeta=zeta(TS))的高度是根据与沿反应坐标 zeta 变形反应物相关的应变能 DeltaE(strain)(zeta)以及这些变形反应物之间的相互作用能 DeltaE(int)(zeta)来解释的:DeltaE(zeta)=DeltaE(strain)(zeta)+DeltaE(int)(zeta)。我们还使用替代的碎片和价键模型来分析过渡态的特征。