Suppr超能文献

微通道中单个微管的电泳

Electrophoresis of individual microtubules in microchannels.

作者信息

van den Heuvel M G L, de Graaff M P, Lemay S G, Dekker C

机构信息

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2007 May 8;104(19):7770-5. doi: 10.1073/pnas.0608316104. Epub 2007 Apr 30.

Abstract

We use micrometer-sized fluidic channels to confine and measure electrophoresis of freely suspended individual microtubules. We measure orientation-dependent velocities of microtubules and the electro-osmotic flow mobility in our channels to infer the anisotropic electrophoretic mobility of microtubules under physiological conditions. We discuss the difference between electrophoresis and purely hydrodynamic motion and its implications for interpreting mobility measurements. We show that the mobility anisotropy is a factor of 0.83, clearly different from the well known anisotropy factor of 0.5 in Stokes drag coefficients for cylindrical objects. We also show that the velocity is independent of microtubule length, which would be different for hydrodynamic motion. We demonstrate that the electric force on the counterions has important consequences for the interpretation of electrophoresis experiments and that ignoring this can lead to an underestimation of the effective charge by orders of magnitude. From the electrophoresis measurements, we calculate an effective surface-charge density of -36.7 +/- 0.4 mC/m2 for microtubules. Electrophoretic measurements of subtilisin-digested microtubules, which have the negatively charged C termini on the outer surface removed, show a 24% decrease in mobility and, correspondingly, in surface charge, but no change in anisotropy.

摘要

我们使用微米级的流体通道来限制和测量自由悬浮的单个微管的电泳。我们测量微管在通道中与方向相关的速度以及电渗流迁移率,以推断生理条件下微管的各向异性电泳迁移率。我们讨论了电泳与纯流体动力学运动之间的差异及其对解释迁移率测量结果的影响。我们发现迁移率各向异性系数为0.83,明显不同于圆柱状物体斯托克斯阻力系数中众所周知的0.5的各向异性系数。我们还发现速度与微管长度无关,而这在流体动力学运动中是不同的。我们证明反离子上的电力对电泳实验的解释有重要影响,忽略这一点可能导致有效电荷被低估几个数量级。通过电泳测量,我们计算出微管的有效表面电荷密度为 -36.7 +/- 0.4 mC/m²。对枯草杆菌蛋白酶消化后的微管进行电泳测量,其外表面带负电荷的C端被去除,结果显示迁移率相应降低了24%,表面电荷也降低了,但各向异性没有变化。

相似文献

1
Electrophoresis of individual microtubules in microchannels.微通道中单个微管的电泳
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7770-5. doi: 10.1073/pnas.0608316104. Epub 2007 Apr 30.
3
Analysis of the migration behaviour of single microtubules in electric fields.电场中单个微管迁移行为的分析。
Biochem Biophys Res Commun. 2002 Apr 26;293(1):602-9. doi: 10.1016/S0006-291X(02)00251-6.
4
Elastic vibrations in seamless microtubules.无缝微管中的弹性振动。
Eur Biophys J. 2005 Oct;34(7):912-20. doi: 10.1007/s00249-005-0461-4. Epub 2005 May 11.
5
Anisotropic elastic properties of microtubules.微管的各向异性弹性特性。
Eur Phys J E Soft Matter. 2005 May;17(1):29-35. doi: 10.1140/epje/i2004-10102-5. Epub 2005 Apr 6.
7
8
Microtubules as mechanical force sensors.微管作为机械力传感器。
Biosystems. 2007 Mar;88(1-2):137-46. doi: 10.1016/j.biosystems.2006.05.003. Epub 2006 Jun 27.

引用本文的文献

8
A DNA turbine powered by a transmembrane potential across a nanopore.一种由跨纳米孔的跨膜电势驱动的 DNA 涡轮机。
Nat Nanotechnol. 2024 Mar;19(3):338-344. doi: 10.1038/s41565-023-01527-8. Epub 2023 Oct 26.

本文引用的文献

3
Streaming currents in a single nanofluidic channel.单个纳米流体通道中的流动电流。
Phys Rev Lett. 2005 Sep 9;95(11):116104. doi: 10.1103/PhysRevLett.95.116104. Epub 2005 Sep 8.
5
Microscale transport and sorting by kinesin molecular motors.驱动蛋白分子马达介导的微尺度运输与分选
Biomed Microdevices. 2004 Mar;6(1):67-74. doi: 10.1023/b:bmmd.0000013368.89455.8d.
6
Analysis of the migration behaviour of single microtubules in electric fields.电场中单个微管迁移行为的分析。
Biochem Biophys Res Commun. 2002 Apr 26;293(1):602-9. doi: 10.1016/S0006-291X(02)00251-6.
8
High-resolution model of the microtubule.微管的高分辨率模型。
Cell. 1999 Jan 8;96(1):79-88. doi: 10.1016/s0092-8674(00)80961-7.
9
Acting on actin: the electric motility assay.作用于肌动蛋白:电运动分析
Eur Biophys J. 1998;27(4):403-8. doi: 10.1007/s002490050147.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验