Mukherjee Sanjoy, Kim Keesuk, Nair Sankar
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, USA.
J Am Chem Soc. 2007 May 30;129(21):6820-6. doi: 10.1021/ja070124c. Epub 2007 May 5.
Nanotubes are important "building block" materials for nanotechnology, but a synthesis process for short (sub-100-nm) solid-state nanotubes with structural order and monodisperse diameter has remained elusive. To achieve this goal, it is critical to possess a definitive mechanistic framework for control over nanotube dimensions and structure. Here we employ solution-phase and solid-state characterization tools to elucidate such a mechanism, particularly that governing the formation of short ( approximately 20 nm), ordered, monodisperse (3.3 nm diameter), aluminum-germanium-hydroxide ("aluminogermanate") nanotubes in aqueous solution. Dynamic light scattering (DLS), vibrational spectroscopy, and electron microscopy show that pH-control of chemical speciation in the aluminogermanate precursor solution is important for producing nanotubes. A combination of DLS, UV-vis spectroscopy, and synthesis variations is then used to study the nanotube growth process as a function of temperature and time, revealing the initial condensation of amorphous nanoparticles of size approximately 6 nm and their transformation into ordered aluminogermanate nanotubes. The main kinetic trends in the experimental data can be well reproduced by a two-step mathematical model. From these investigations, the central phenomena underlying the mechanism are enumerated as: (1) the generation (via pH control) of a precursor solution containing aluminate and germanate precursors chemically bonded to each other, (2) the formation of amorphous nanoscale ( approximately 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. This mechanism provides a model for controlled low-temperature (<373 K) assembly of short, monodisperse, structurally ordered nanotube objects.
纳米管是纳米技术中重要的“构建模块”材料,但具有结构有序且直径单分散的短(小于100纳米)固态纳米管的合成工艺一直难以实现。为实现这一目标,拥有一个用于控制纳米管尺寸和结构的明确机理框架至关重要。在此,我们采用溶液相和固态表征工具来阐明这样一种机制,特别是控制水溶液中短(约20纳米)、有序、单分散(直径3.3纳米)的铝锗氢氧化物(“铝锗酸盐”)纳米管形成的机制。动态光散射(DLS)、振动光谱和电子显微镜表明,铝锗酸盐前驱体溶液中化学物种的pH控制对于纳米管的产生很重要。然后结合DLS、紫外可见光谱和合成变化来研究纳米管生长过程与温度和时间的关系,揭示了尺寸约为6纳米的无定形纳米颗粒的初始凝聚及其向有序铝锗酸盐纳米管的转变。实验数据中的主要动力学趋势可以通过一个两步数学模型很好地再现。从这些研究中,该机制背后的核心现象被列举为:(1)通过pH控制产生一种含有相互化学键合的铝酸盐和锗酸盐前驱体的前驱体溶液,(2)通过温度控制形成无定形纳米级(约6纳米)凝聚物,以及(3)从无定形纳米级凝聚物中自组装短纳米管。这种机制为短的、单分散的、结构有序的纳米管物体的可控低温(<373 K)组装提供了一个模型。